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KHOVANOV ALGEBRAS OF TYPE B AND TENSOR POWERS OF

THE NATURAL OSp-REPRESENTATION

THORSTEN HEIDERSDORF AND JONAS NEHME AND CATHARINA STROPPEL

Abstract. We develop the theory of projective endofunctors for modules of Khovanov
algebras K of type B. In particular we compute the composition factors and the
graded layers of the image of a simple module under such a projective functor. We
then study variants of such functors for a subquotient eK̃e. Via a comparison of
two graded lifts of the Brauer algebra we relate the Khovanov algebra to the Brauer
algebra and use this to show that projective functors describe translation functors on
representations of the orthosymplectic supergroup OSp(r|2n). As an application we
get a description of the Loewy layers of indecomposable summands in tensor powers
of the natural representation of OSp(r|2n).
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1. Introduction

1.1. Decomposition of tensor powers. The decompositon of tensor powers V ⊗d

of the standard representation V = C
n of GL(n) can be understood via Schur–Weyl

duality. Passing to the orthogonal group O(n) means replacing the group ring C[Sd] by
the Brauer algebra Brd(n). In particular, the description of the primitive idempotents
in Brd(n) can be used to dcompose V ⊗d into explicitely given irreducible O(n)-modules.
Remarkably, the statement of Schur–Weyl duality carries over almost unchanged to
tensor powers V ⊗d of the standard representation V = C

m|n of the general linear
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supergroup GL(m|n). However, when we replace O(n) by its super analog, the orthosymplectic
supergroup OSp(r|2n) (r = 2m or 2m + 1), the decomposition V ⊗d is no longer
completely reducible in general. The problem of describing the decomposition of
V ⊗d into indecomposable summands has a rich history. A first step was completed
by Benkart, Ram and Shader [BSR98] who in particular constructed highest weight
vectors in such tensor powers.
An important ingredient in solving this problem are the Deligne interpolating categories
Repδ, δ ∈ C [Del07]. The indecomposable objects in Repδ are parametrized by the set
of all partitions, and we denote the corresponding indecomposable object by Rδ(λ). As
Deligne showed, these categories admit symmetric monoidal functors F = F(r|2n) : Repδ=r−2n →
OSp(r|2n)-mod which send the tensor generator Rδ((1)) attached to the partition (1)
to V , and therefore Fr|2n(Rδ((1))⊗d) = V ⊗d.
This viewpoint was used by Lehrer–Zhang [LZ17] to establish a fundamental result
about End(V ⊗d): They proved that the functor Fr|2n is full which amounts to say that

the Brauer algebras surject onto End(V ⊗d). A similar categorical approach had been
previously used by Comes–Wilson [CW12b] to prove a corresponding statement for
mixed tensor powers of GL(m|n). Here the walled Brauer algebra Br|s(m−n) surjects

onto End(V ⊗r ⊗ (V ∨)⊗s) for the standard representation V = C
m|n.

The results of Lehrer–Zhang were used by Comes–Heidersdorf [CH17]. They classified
the indecomposable representations in Rδ((1))⊗d in Repδ for any δ and deduced from
the fullness of Fr|2n a description of the kernel of Fr|2n and subsequently a classification

of the indecomposable summands in V ⊗d for any d ∈ N. They moreover gave an
explicit tensor product decomposition formula for Rδ(λ)⊗ Rδ(µ) and characterized the
projective summands in V ⊗d.
The results in [CH17] give however no method to describe the composition factors or
Loewy layers of the indecomposable representation Fr|2n(Rδ(λ)) nor do they allow to
determine which representations of OSp(r|2n) are of the form Fr|2n(Rδ(λ)) for some
partition λ. We follow in this article the methods of Brundan–Stroppel [BS12b][BS12a]
(that dealt with mixed tensor powers of GL(m|n)) to completely solve this problem. The
essential input is that we can model V ⊗d and its decomposition into indecomposable
summands in the world of modules for Khovanov’s arc algebra of type B. The OSp-case
has however a number of major added difficulties compared to the GL(m|n)-case.
It is important to work with representations of the supergroup OSp(r|2n) here instead
of the connected supergroup SOSp(r|2n) (or, equivalently, with representations of the
Lie superalgebra osp(r|2n)). While there is a symmetric monoidal functor from the
Deligne category to SOSp(r|2n)-mod, it is not full. There is also no diagrammatic
description via Khovanov algebras in the SOSp(r|2n) or osp(r|2n)-case.

1.2. Khovanov’s arc algebra. Khovanov algebras arise naturally in the representation
theory of supergroups as follows. Let G be a quasi-reductive supergroup. The category
F of finite-dimensional algebraic representations decomposes into blocks Γ. Let PΓ be
a minimal projective generator of a block, i.e

PΓ =
⊕

λ∈Γ

P (λ)
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where P (λ) is the projective cover of the irreducible representation L(λ) ∈ Γ. By
Morita theory, the category of finite dimensional left modules over the locally finite
endomorphism algebra

modlf (PΓ) =
⊕

λ,µ∈Γ

Hom(P (λ), P (µ))

is equivalent to Γ. For GL(m|n) Brundan–Stroppel [BS12b] gave a diagrammatic
description of modlf (PΓ): They constructed a diagrammatically defined algebra KΓ

(a Khovanov algebra of type A) which is isomorphic to modlf (PΓ). Summing over all
blocks yields an equivalence of abelian categories

K-mod ∼= GL(m|n)-mod

between finite dimensional left K-modules and finite dimensional representations of
GL(m|n).
The type B analog of the Khovanov algebra (again denotedK) was studied in [ES16a][ES17].
It was shown by Ehrig–Stroppel [ES16a] how to relate it to blocks of the orthosymplectic
supergroup OSp(r|2n). Apart from added combinatorial difficulties, there is a substantial
difference: The Khovanov arc algebra of type B is not isomorphic to modlf (PΓ). In
[ES21, Theorem 10.5], Ehrig and Stroppel proved that a subquotient (here called
eK̃e) of the Khovanov algebra of type B is in fact isomorphic to the locally finite
endomorphism algebra of a projective generator for OSp(r|2n) and thus gives rise to
an equivalence

(1) Ψ: (eK̃e)-mod → OSp(r|2n)-mod

of categories between the finite dimensional representations of OSp(r|2n) and finite
dimensional eK̃e-modules. Both algebrasK and eK̃e can be endowed with a nonnegative
grading and this actually induces a grading on OSp(r|2n)-mod.
Note that it is not apparent at all yet that all this is useful to analyze V ⊗d since the
above equivalences are not monoidal.

1.3. Translation functors and projective functors. The crucial idea is to look at
V ⊗d as the image of the trivial representation 1 under a series of translation functors
θi. First results about translation functors in the osp(r|2n)-case were obtained by
[GS10][GS13]. Summing over all blocks gives an isomorphism of endofunctors

⊕

i

θi
∼= − ⊗ V.

The key point is that we can model the effect of translation functors θi in the world
of eK̃e-modules even though Ψ is not a monoidal equivalence. The endofunctors in
modlf (eK̃e) that will eventually correspond to translation functors on F are called
projective functors. For GL(m|n) the theory of projective functors was developed
in [BS10][BS12b][BS12a], for OSp(r|2n) some partial results were obtained in [ES18]
[HNS].
In Section 4 we describe the effect of projective functors on irreducibleK-modules. Here
many of the proofs from the type A case [BS10] carry over almost verbatim (with some
notable exceptions like Lemma 4.15). In Section 5 we are then discussing the analogous
theory for the subquotient eK̃e for which we can mostly not rely on previous work in
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type A. Our discussion culminates in the following theorem (Theorem 5.20) about the
image of an irreducible eK̃e-module L(γ) under a projective functor (the terminology
is explained in Sections 4–5). Part (i) describes the composition factors in the grading
filtration and part (iii) gives structural information about the module.

Theorem A. Suppose we are given a proper ΛΓ-matching t and γ ∈ Γ. Then

(i) in the graded Grothendieck group of modlf (eK̃Λe)

[G̃t
ΛΓL(γ)] =

∑

µ

(q + q−1)nµ [L(µ)],

where nµ denotes the number of lower circles in µt and we sum over all µ ∈ Λ
such that
(a) γ is the lower reduction of µt,
(b) there exists no lower line in µt,

(ii) the module G̃t
ΛΓL(γ) is nonzero if and only if all cups of tγ are anticlockwise

oriented and
(iii) under the assumptions of (ii) define λ ∈ Λ such that λ is the upper reduction of

tγ or alternatively λtγ is oriented and every cup and cap is oriented anticlockwise.
In this case G̃t

ΛΓL(γ) is a self-dual indecomposable module with irreducible head

L(λ)〈− caps(t)〉.

We then relate two types of endofunctors. On the one hand we consider the decomposition
of the endofunctor ⊗V =

⊕

i∈Z θi of F , and on the other hand we define the functors

Θ̃i : eK̃e-mod → eK̃e-mod, which are of the form G̃t
ΛΓ for certain choices of Λ,Γ.

Theorem B. We have an equivalence of categories Ψ: (eK̃e)-mod → OSp(r|2n)-mod
such that θi ◦ Ψ ∼= Ψ ◦ Θ̃i.

The proof is rather involved and involves a comparison of two different graded versions
of the Brauer algebra. The basic idea is to consider the analog of V ⊗d on the Khovanov-
side eK̃e which we call

Td :=
⊕

i∈(Z+ δ+1

2
)d

ΘiL(∅δ).

The key theorem 6.3 shows that there exists an isomorphism of algebras ξd : Brd(δ)
∼=→

EndK(Td) which intertwines i-induction (defined in Definition 2.21) and Θi. Once this
theorem is proven, we can use the known surjection Brd(δ) → EndF (V ⊗d) to relate
endomorphism spaces for eK̃e with those in F . The difficulty in proving Theorem 6.3 is
that the idempotents picking out the eigenspaces for the i-induction are not part of the
definition of the Brauer algebra and very hard to handle. We replace the Brauer algebra
with two different graded lifts – one, Gd(δ), due to Ge Li [Li14], has these idempotents
build in the definition; the other algebra Cd(δ) [ES21, Section 11] [Mkr20, Section 4]

can be easily identified with EndK(Td). The isomorphism ξd : Brd(δ)
∼=→ EndK(Td) has

been shown in [Mkr20] and it swaps i-induction and Θi by construction.
Analogous results following the methods of [BS10] [BS12a] and the present paper have
been obtained recently in the p(n)-case [Neh23] as well.
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1.4. Direct summands and representations of the form FRδ(λ). Using Theorems
A and B we are now able to analyze indecomposable summands of V ⊗d via repeatedly
tensoring the irreducible K-module corresponding to the trivial representation with
geometric bimodules. More precisely, every indecomposable summand FRδ(λ) is of
the form Ψ(G̃t

ΛΓL((∅δ)?

+)) for some blocks Λ and Γ in eK̃e and some ΛΓ-matching
t. Conversely every such choice of Λ, Γ and t gives in this way an indecomposable
summand in some V ⊗d.
The corresponding questions for GL(m|n) were studied in [Hei17] based on [BS12a].
Our description of G̃t

ΛΓL(γ) in Theorem A translates to the following corollary.

Corollary C. The modules FRδ(λ) are self-dual with simple head and socle. Their
Loewy length is given by 2d(λ) + 1, where d(λ) denotes the number of caps in the cap
diagram of the weight diagram associated to λ and their grading filtration agrees with
its radical and its socle filtration.

We remark that this applies in particular to all projective covers P (λ). Of course
Theorem A is much stronger than what is listed in the corollary as it provides a
diagrammatic description of all socle layers. It also gives a complete description of
the action of translation functors on irreducible modules and their projective covers,
substantially improving the results of [GS10][GS13].
Given this, we investigate the question which irreducible OSp(r|2n)-modules appear as
direct summands in V ⊗d. We will look at this question from two different angles. First
we give in Corollary 8.1 different characterizations, when an indecomposable summand
FRδ(λ) is irreducible and after that we try to classify the irreducibles L(λ, ε) appearing
as a direct summand in Corollary 8.7.
For this we will recall the notion of a Kostant module in Section 7.1 and will also revisit
Kazhdan–Lusztig polynomials in our setting.

Corollary D. The following statements are equivalent for an indecomposable direct
summand FRδ(λ) in V ⊗d associated to a partition λ due to Corollary 8.1.

• FRδ(λ) is irreducible.
• λ is a Kostant-Deligne weight.
• The Kazhdan–Lusztig polynomials pµ,λ(q) are monomials for all µ ≤ λ.
• The weight diagram associated to λ is ∨∧- and ∧∧-avoiding.
• The cap diagram associated to λ is cap-free.
• The weight diagram associated to λ is maximal in the Bruhat order.

In order to classify the irreducible OSp(r|2n)-modules, which appear as a direct summand
in some V ⊗d, we introduce an automorphism of order 2 on the category of finite
dimensional OSp(r|2n)-modules. It is defined via some manipulation on the Khovanov
algebra side and e.g. interchanges the trivial with the natural representation for r =
2n+ 1. It maps L(λ, ε) to L(λ✷,−ε) for some combinatorially defined weight λ✷.

Corollary E. The following statements are equivalent.

• L(λ, ε) is a direct summand of some V ⊗d for some ε.
• λ or λ✷ is a Kostant weight in the sense of [GH23].

And if r is odd or at(λ) > 1 these are equivalent to
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• L(λ) or L(λ✷) satisfies the Kac–Wakimoto conditions (considered as osp(r|2n)-
modules).

Since [CH17] established tensor product decomposition laws for FRδ(λ) ⊗ FRδ(µ), a
direct consequence of these corollaries are such decomposition laws for tensor products
between any two Kostant or projective modules.

2. The orthosymplectic supergroup

The ground field is always assumed to be C.

Definition 2.1. Let V be a vector superspace and β : V × V → C a nondegenerate
supersymmetric bilinear form (i.e. a nondegenerate bilinear form that is symmetric
on V0, skewsymmetric on V1 and 0 on mixed products). Then osp(V ) is the Lie
subsuperalgebra of gl(V ) given by

osp(V )i := {x ∈ gl(V )i | β(x(a), b) = −(−1)|x||a|β(a, x(b)) for all a, b ∈ V }.

If V = C
r|2n we write osp(r|2n) for osp(V ).

We fix the usual standard basis {εi}1≤i ∩{δj}1≤j≤n of the dual h∗ of the Cartan algebra
of diagonal matrices. We will denote by

X(osp(r|2n)) :=
m

⊕

i=1

Zεi ⊕
n

⊕

j=1

Zδj

the integral weight lattice. When referring to a weight we will always mean an integral
weight, i.e. an element of X(osp(r|2n)). The parity shift Π gives rise to a decomposition
of osp(r|2n) mod = F ′ ⊕ ΠF ′, where F ′ contains all objects such that the parity of the
weight space agrees with the parity of the corresponding weight. By [Ser11, Theorem
9.9] the finite dimensional irreducible osp(r|2n)-modules are all highest weight modules
and the finite dimensional irreducible modules are up to isomorphism and parity shift
uniquely determined by their highest weight. In the following we will restrict ourselves
to F ′.
We follow [GS10, Section 5] and fix a certain choice of simple roots. This gives then rise
to a set of positive roots Φ+ and the corresponding ρ is given by 1

2(
∑

α∈Φ+
0
α−

∑

β∈Φ+
1
β).

The following lemma is due to [GS10, Cor. 3].

Lemma 2.2. Let λ ∈ X(osp(r|2n)) and write λ+ρ =
∑m

i=1 aiεi +
∑n

j=1 bjδj . Then λ is
integral dominant if and only if λ ∈

⊕m
i=1 Zεi ⊕

⊕n
j=1 Zδj and the following conditions

hold:

• If g = osp(2m + 1|2n)
(i) either a1 > a2 > · · · > am ≥ 1

2 and b1 > b2 > · · · > bn ≥ 1
2 ,

(ii) or a1 > a2 > · · · > am−l−1 > am−l = · · · = am = −1
2 and b1 > b2 > · · · >

bn−l−1 ≥ bn−l = · · · = bn = 1
2 .

• If g = osp(2m|2n)
(i) either a1 > a2 > · · · > |am| and b1 > b2 > · · · > bn > 0,
(ii) or a1 > a2 > · · · > am−l−1 ≥ am−l = · · · = am = 0 and b1 > b2 > · · · >

bn−l−1 > bn−l = · · · = bn = 0.
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Definition 2.3. We denote the set of integral dominant weights for osp(r|2n) by
X+(osp(r|2n)). We write Lg(λ) for the finite dimensional irreducible module in F ′

with highest weight λ ∈ X+(osp(r|2n)).

Definition 2.4. On h∗ we have the standard symmetric bilinear form (_,_) which is
given by (εi, εj) = δi,j , (εi, δj) = 0 and (δi, δj) = −δi,j.
A root α ∈ Φ is called isotropic if (α,α) = 0.
The degree of atypicality at(λ) of a weight λ ∈ h∗ is then the maximum number of
mutually orthogonal odd isotropic roots α ∈ Φ+

1 such that (λ+ ρ, α) = 0. An element
λ ∈ h∗ is called typical if at(λ) = 0 and atypical otherwise.

By [CW12a, Theorem 2.30] any two weights lying in the same block have the same
atypicality.

Definition 2.5. We define a partial order on X+(osp(r|2n)) by saying that λ ≥ µ for
λ, µ ∈ X+(osp(r|2n)) if λ− µ ∈

∑

α∈Φ+ N0α.

2.1. Hook partitions. There exists another commonly used labelling set of the integral
dominant weights for osp(r|2n) by (n,m)-hook partitions (for r = 2m + 1 or r = 2m).

Definition 2.6. A partition pλ is called (n,m)-hook if pλn+1 ≤ m. By ∅ we denote the
partition given by ∅ = (0, 0, . . . ) and by Λ we denote the set of all partitions.

The following definition from [ES17, Definition 2.19] relates integral dominant weights
and (n,m)-hook partitions.

Definition 2.7. We associate to an (n,m)-hook partition pλ the weight wt(pλ) ∈
X+(osp(r|2n)) via wt(pλ) = (a1, . . . , am|b1, . . . , bn) − ρ, where ai and bj are defined as
follows:

• If r is odd:

bj = max
(

pλj − j −
δ

2
+ 1,

1

2

)

and ai = max
(

pλt
i − i+

δ

2
,−

1

2

)

.

• If r is even:

bj = max
(

pλj − j −
δ

2
+ 1, 0

)

and ai = max
(

pλt
i − i+

δ

2
, 0

)

.

This almost defines an identification of (n,m)-hook partitions with X+(osp(r|2n)).
Only the integral dominant weights for osp(2m|2n) with am < 0 do not correspond to an
(n,m)-hook partition. For the actual bijection for OSp(r|2n) we refer to Proposition 2.8
and Proposition 2.11.

2.2. Algebraic supergroups. Instead of representations of osp(r|2n) we consider in
this paper representations of the algebraic supergroup OSp(r|2n) and the connected
component SOSp(r|2n) of the identity. We refer to [CH17, Section 7.1] [ES17] for the
definition. For SOSp(r|2n) we have a monoidal isomorphism of categories

(2) osp(r|2n)-mod ∼= SOSp(r|2n)-mod.

Representations of OSp(r|2n) can then be understood via Harish-Chandra induction
from SOSp(r|2n) [ES17]. In order to explicitly describe the irreducible objects we need
to distinguish whether r = 2m + 1 is odd or r = 2m is even. We will use Lg(λ) to
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refer to the irreducible SOSp(r|2n)-module of highest weight λ for an integral dominant
weight λ ∈ X+(osp(r|2n)).

Proposition 2.8. For G = OSp(2m + 1|2n) the set

(3) X+(G) = X+(g) × Z/2Z = {(λ, ε) | λ ∈ X+(g), ε ∈ {±}}

is a labelling set for the isomorphism classes of finite dimensional irreducible G-modules
in F . The irreducible module L(λ, ε) is just the irreducible module Lg(λ) extended to a
G-module by letting − id act by ±1. Moreover the following map is a bijection.

Ψ: {(m,n)-hook partitions} × Z/2Z → X+(G)

(pλ, ε) 7→ (wt(pλ), ε)

Remark 2.9. The irreducible representations L(λ, ε) and L(µ, ε′) lie in the same block
if and only if ε = ε′ and Lg(λ) and Lg(µ) belong to the same block in SOSp(2m + 1|2n)-
mod, see [ES17, Remark 2.8 + Corollary 2.9].

Definition 2.10. For G = OSp(2m|2n) and σ corresponding to the nontrivial element
of Z/2Z we introduce the set

(4) X+(G) := {(λ, ε) | λ ∈ X+(g)/σ and ε ∈ Stabσ(λ)}

where Stabσ(λ) is the stabilizer of λ for the group generated by σ.
Every λ ∈ X+(g) is contained in a unique orbit consisting of either one or two elements.
In the former case we denote the orbit by λ. The stabilizer has two elements and we
will write (λ,+) for (λ, e) and (λ,−) for (λ, σ). In the latter case the stabilizer is trivial
and we will denote the orbit by λG and abbreviate (λG, e) by λG.

Proposition 2.11. Let G = OSp(2m|2n), g = osp(2m|2n) and G′ = SOSp(2m|2n).
Assume that

(5) λ =
m

∑

i=1

aiεi +
n

∑

j=1

bjδj − ρ ∈ X+(g)

is an integral dominant weight. Then we have the following:

(i) The L(λ, ε) for (λ, ε) ∈ X+(G) form a complete list of pairwise nonisomorphic
irreducible OSp(2m|2n)-modules in F .

(ii) We have a bijection

Ψ: {signed (n,m)-hook partitions} → X+(G), pλ 7→ wt(λ),

(pλ,±) 7→ (wt(λ),±, ).

The proof can be found in [ES17, Proposition 2.12+2.13, Lemma 2.21].

2.3. The Deligne category Repδ.

Definition 2.12. Let δ ∈ C. A Brauer diagram of type (r, s) is a partitioning of the set
{1, . . . , r + s} into subsets of cardinality 2. This can be represented diagrammatically
by identifying p ∈ {1, . . . , r + s} with the point (p, 0) if 1 ≤ p ≤ r and (p − r, 1) if
r < p ≤ r + s in the plane and connecting the points in each subset by an arc inside
the rectangle spanned by these points.
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Definition 2.13. The Brauer category Br(δ) (also called the skeletal Deligne category
Rep0(Oδ) in [CH17]) for δ ∈ C is the category with objects d ∈ Z≥0 and HomBr(δ)(r, s) is
the C-vector space with basis given by all (r, s)-Brauer diagrams. The multiplication is
given by stacking diagrams vertically and evaluating a circle to δ. The Brauer category
admits a monoidal structure, given by m⊗ n = m+ n on objects and on morphisms it
is giving by stacking diagrams horizontally. The Deligne category Repδ is the additive
Karoubian envelope of Br(δ). The Brauer algebra Brd(δ) is the endomorphism algebra
EndBr(δ)(d) of d.

The primitive idempotents of Brd(δ) can be constructed from the group algebra of
the symmetric group, see [CH17]. For any partition λ with |λ| < d we denote the

so-obtained primitive idempotents by e
(i)
λ (for certain i ∈ N).

Theorem 2.14. ([CH17, Thm 3.4]) The set {e
(i)
λ | λ ∈ Λd(δ)} is a complete set of

pairwise nonconjugate primitive idempotents in Brd(δ), where Λd(δ) denotes the set

(6) Λd(δ) :=

{

{λ ∈ Λ | |λ| = d− 2i, 0 ≤ i ≤ d
2} if δ 6= 0 or d is odd or d = 0,

{λ ∈ Λ | |λ| = d− 2i, 0 ≤ i < d
2} if δ = 0 and d > 0 is even.

Definition 2.15. In Repδ every idempotent has an image and we set Rδ(λ) := im e0
λ.

Theorem 2.16. [CH17, Thm. 3.5] The assignment λ 7→ Rδ(λ) defines a bijection
between the set Λ of all partitions and isomorphism classes of nonzero indecomposable
objects in Repδ.

Remark 2.17. For the object Rδ((1)) we write also Rδ( ). It agrees with the object
1 in the Brauer category Br(δ).

2.4. From Repδ to OSp. As the natural representation V of OSp(r|2n) has superdimension
δ = r − 2n there exists a symmetric monoidal functor F = F(r|2n) : Repδ → F by the
universal property of the Deligne category Repδ, which is given by sending 1 to V (see
[Del07, Proposition 9.4]). Then we have F(d) = V ⊗d and we get an action of Brd(δ) on
V ⊗d. This functor is actually full (see [LZ17, Thm. 5.6]) and thus we have in particular
a surjective algebra homomorphism

(7) Φd,δ : Brd(δ) → EndF (V ⊗d).

Theorem 2.18. [CH17, Thm. 7.3] The assignment λ 7→ FRδ(λ) defines a bijection
between the set Λ(d, r, n) := {λ ∈ Λd(δ) | FRδ(λ) 6= 0} and a set of representatives of
isomorphism classes of nonzero indecomposable summands in V ⊗d.

2.5. Endofunctors. In the category Repδ, we have the endofunctor ind = _⊠Rδ( )
which is given by tensoring with Rδ( ). Note that diagrammatically it adds to each
basis morphism one strand to the right. On the other hand we can consider the
endofunctor _ ⊗ V in the category OSp(r|2n)-mod, and as the functor F is monoidal,
we also have

(_ ⊗ V ) ◦ F ∼= F ◦ ind .

In the following we would like to refine this isomorphism by decomposing _ ⊗ V and
ind into a direct sum of functors. For this we are going to introduce the so called
Jucys–Murphy elements, originally defined by Nazarov in [Naz96].
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Definition 2.19. The Jucys–Murphy elements ξk ∈ Brd(δ) for 1 ≤ k ≤ d are the
elements

ξk :=
δ − 1

2
+

∑

1≤i<k

(si,k − τi,k).

Furthermore we define Ωd := 2(ξ1 + · · · + ξd).

Lemma 2.20. The Jucys–Murphy elements generate a commutative subalgebra GZd(δ)
of Brd(δ) and the element Ωd is central in Brd(δ).

Proof. This is [Naz96, Cor. 2.2]. �

This leads us to the following refinement of the induction functor for Repδ. For the
well-definedness, we invite the reader to consult [ES21, Lemma 2.15].

Definition 2.21. For i ∈ Z + δ
2 we define the i-induction functor

i -ind: Repδ → Repδ,

M 7→ proji(M ⊠ Rδ( )).

Here, for an indecomposable object Rδ(λ), proji is the projection onto the generalized
i-eigenspace of ξ|λ|+1 viewed as an element in EndRepδ

(Rδ(λ) ⊠ Rδ( )), which is then
extended to arbitrary objects M .

We clearly have
⊕

i∈Z+ δ
2

i -ind = ind.

On the other hand we have the Casimir element C in the universal enveloping algebra
U(osp(r|2n)) (see [Mus12, Lemma 8.5.1]). This is central and thus multiplication by C
denotes an endomorphism of every OSp(r|2n)-module and we can look at the eigenvalue
of this endomorphism.

Definition 2.22. The endofunctor _ ⊗ V of F decomposes as _ ⊗ V =
⊕

i∈Z+ δ
2

θi,

where θi denotes the projection onto the summand, which changes the generalized
eigenvalue of C by 2i. We call θi the i-translation functor.

The following theorem from [ES21, Thm. 8.10] relates the notions of i-induction and
i-translation.

Theorem 2.23. The functor F(r|2n) intertwines i-induction with i-translation for any

i ∈ Z + δ
2 , i.e.

F(r|2n) ◦ i -ind ∼= θi ◦ F(r|2n).

Example 2.24. The endofunctor 0-ind maps Rδ(∅) to Rδ( ). On F this corresponds
to the fact that 0-translation applied to the trivial representation gives the natural
representation.

3. Weight diagrams

Throughout this section we fix natural numbers r and n and set δ = r − 2n, m = ⌊ δ
2⌋

and denote by L =
(

Z+ δ
2

)

∩R≥0 the nonnegative (half) integer line. Furthermore we

call elements of L vertices.
For every Rδ(λ) we will later get an irreducible K-module (where K is the Khovanov
algebra defined in Section 4). These irreducible modules will be labeled by Deligne
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weight diagrams and we will present the correspondence between partitions and Deligne
weight diagrams. On the other hand the highest weights of irreducible OSp(r|2n)-
modules are parametrized by (n,m)-hook partitions (together with a sign ε) and we
will also recall their associated weight diagrams (the hook weight diagrams).
Ehrig and Stroppel provided in [ES21, Definition 7.7] a combinatorially defined map †
which associates to the Deligne weight diagram the hook weight diagram of the head
of the corresponding FRδ(λ) (see Theorem 3.20).
Ehrig and Stroppel provided a third set of weight diagrams, the so called super weight
diagrams. For proving a Morita equivalence between OSp(r|2n)-mod and a subquotient
eK̃e of the Khovanov algebra, they identified eK̃e with a projective generator for
OSp(r|2n) (see [ES21, Theorem 10.5] and also the proof of Theorem 6.4). The super
weight diagrams are mainly the Deligne weight diagrams which are associated to
partitions which give rise to projective FRδ(λ).

3.1. Basic definitions.

Definition 3.1. A weight diagram µ is a map µ : L → {×, ◦,∨,∧, ⋄} such that ⋄ can
only occur as image of 0 and conversely the image of 0 can only be ◦ or ⋄. Furthermore
for ? ∈ {◦,×,∨,∧, ⋄}, we denote by #?(µ) ∈ Z≥0 ∪ {∞} the number of ?’s appearing
in µ.
The symbols ◦, ×, ∨, ∧ and ⋄ are called nought, cross, down, up and diamond,
respectively.

Definition 3.2. We call a weight diagram µ admissible if #◦(µ)+#×(µ)+#∧(µ) < ∞
and flipped if #◦(µ) + #×(µ) + #∨(µ) < ∞.

Definition 3.3. Two admissible weight diagrams λ and µ belong to the same block Λ
if the position of ◦’s and ×’s agree and either #∧(λ) ≡ #∧(µ)(mod 2) or they both
start with ⋄.

We usually draw a weight diagram as a sequence together with the lowest number of
L (sometimes we also omit this number), i.e.

0
. . .

or
1
2 . . .

By turning every symbol upside down (i.e. exchanging ∨’s and ∧’s) we obtain a bijection
between admissible and flipped weight diagrams.

Definition 3.4. We call two symbols neighbored if they are only separated by ◦’s and
×’s. For the following a ⋄ can be interpreted either as ∨ or ∧. For two admissible
weight diagrams µ, λ we say that µ is obtained from λ by a Bruhat move, if one of the
following holds:

• λ has a pair of neighboring labels ∨∧ (say at positions i,j) and µ is obtained
by replacing these by ∧∨. This is called a type A move applied at positions i
and j.
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• λ starts (up to some ◦’s and ×’s) with neighboring labels ∧∧ at positions i and
j and µ is obtained by replacing these with ∨∨. This is called a type D move
applied at positions i and j.

We define a partial order on the set of admissible weight diagrams by saying λ ≤ µ if µ
can be obtained from λ by a sequence of Bruhat moves. Note that λ ≤ µ implies that
λ and µ lie in the same block.

Definition 3.5. Let λ and µ be two admissible weight diagrams belonging to the same
block. Suppose that µ has m symbols ∧ and λ has m+ 2k symbols ∧. We define then
l0(λ, µ) := 2k and for i ∈ L we set li(λ, µ) = 0 if λ(i) ∈ {×, ◦} and otherwise

li(λ, µ) := 2k + #{i ≥ j ∈ L | λ(j) = ∨} − #{i ≥ j ∈ L | µ(j) = ∨}.

Note that, as λ and µ are admissible, we have ln(λ, µ) = 0 for big enough n. Therefore
l(λ, µ) =

∑

i≥1 li(λ, µ) is well-defined and finite.

Lemma 3.6. Let λ and µ be admissible weight diagrams. Then λ ≤ µ if and only if
li(λ, µ) ≥ 0 for all i ≥ 0.

Proof. This is [Sey17, Prop. 1.1.8] after observing that we can restrict to the finite case
as λ(i) = µ(i) = ∨ for all i ∈ L big enough. �

Definition 3.7. The cup diagram µ associated to an admissible or a flipped weight
diagram µ is obtained by applying the following steps.

(C-1) First connect neighbored vertices labeled ∨∧ successively by a cup, i.e. we
connect the vertices by an arc forming a cup below. Repeat this step as long
as possible, ignoring already joint vertices. Note that the result is independent
of the order in which the connections are made

(C-2) Attach a vertical ray to each remaining ∨.
(C-3) Connect pairs of neighbored ∧’s from left to right by cups (we interpret ⋄ for

this as a ∧). It might be necessary to attach infinitely many cups in this step.
(C-4) If a single ∧ or ⋄ remains, attach a vertical ray.
(C-5) Put a marker • on each cup created in (C-3) and each ray created in (C-4).
(C-6) We erase the marker from the component that contains the ⋄ if the number of

placed markers in (C-5) is finite and odd.
(C-7) Finally delete all ∨ and ∧ labels at vertices.

The cups and rays are always drawn without intersections, and two cup diagrams are
said to be the same if there is a bijection between the cups and rays, respecting the
connected vertices and the markers •. We call cups and rays with a marker dotted and
those without • undotted.
A cap diagram is just the horizontal mirror image of a cup diagram, for a cup diagram
a we denote by a∗ the cap diagram obtained by horizontal mirroring and vice versa.

Definition 3.8. Given a weight diagram µ, we call the total number of cups (dotted as
well as undotted) in its weight diagram µ the defect def(µ) of µ. The rank of µ is defined
to be rk(µ) := min(#◦(µ),#×(µ)). The layer number of µ is κ(µ) := def(µ) + rk(µ).
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Definition 3.9. We associate to a subset S ⊆ Z + δ
2 the weight diagram λS , which is

given at position i ∈ L by ⋄ if i = 0 ∈ S, and otherwise






















∧ if i ∈ S but −i /∈ S,

∨ if −i ∈ S but i /∈ S,

× if i ∈ S and −i ∈ S,

◦ if i /∈ S and −i /∈ S.

Definition 3.10. An oriented cup diagram aλ is a cup diagram a together with a
weight diagram λ such that the positions of the appearing ◦’s (resp. ×’s) agree and
every cup (resp. ray) is oriented as in Figure 1. An oriented cap diagram λb is just a
cap diagram b together with a Deligne weight diagram λ such that b∗λ is an oriented
cup diagram.

0 1 0 1 0 1 0 1 0 0 0 0

Figure 1. Orientations and degrees

Definition 3.11. A circle diagram ab is a cup diagram a put beneath a cap diagram
b, such that the positions of the appearing ◦’s (resp. ×’s) agree. An oriented circle
diagram aλb is a circle diagram ab together with a Deligne weight diagram λ such that
aλ and λb are oriented cup (resp. cap) diagrams.

Definition 3.12. Given an oriented cup diagram aλ each cup and ray has an associated
integer according to Figure 1. The sum of all these integers is called the degree deg(aλ)
of the oriented cup diagram aλ. The degree of an oriented cap diagram λb is defined
as deg(λb) := deg(b∗λ). For an oriented circle diagram aλb, we define deg(aλb) =
deg(aλ) + deg(λb).
The cups and caps in Figure 1 with a 1 are called clockwise and those with a 0
anticlockwise.

3.2. Deligne weight diagrams.

Definition 3.13. Given a partition λ ∈ Λ, we associate to it the set

X(λ) := {λt
i − i+ 1 −

δ

2
| i ≥ 1} ⊂ Z +

δ

2
.

Using Definition 3.9 we can associate a weight diagram to X(λ). We denote it by λδ

and call it Deligne weight diagram. Furthermore we denote the set of all Deligne weight
diagrams by Λδ.

Lemma 3.14. The assignment λ 7→ λδ defines a bijection

{partitions} → {admissible weight diagrams µ such that #◦(µ) − #×(µ) = ⌊
δ

2
⌋}
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Proof. This is [ES21, Lemma. 7.1] �

With the description of partitions in terms of Deligne weight diagrams, we are now able
to classify the set Λ(d, r, n) [CH17, Cor. 7.14].

Theorem 3.15. There is an equality of sets Λ(d, r, n) = {λ ∈ Λd(δ) | κ(λδ) ≤
min(m,n)}.

We will call these diagrams tensor weight diagrams. Furthermore we have that FRδ(λ)
is projective if and only if κ(λδ) = min(n,m) (see [CH17, Lemma 7.16]).
So far we have no idea what the head of the indecomposable summands FRδ(λ) looks
like. The next section is going to address this and for this purpose introduces hook
weight diagrams.

3.3. Hook weight diagrams. Given a partition λ, we denote by λ∞ the weight
diagram, which is obtained from λδ by turning all symbols upside down (or equivalently
swapping ∨’s and ∧’s). Note that these diagrams are then flipped.
The bijection in Lemma 3.14 clearly induces a bijection

(8) {partitions} → {flipped weight diagrams µ such that #◦(µ) − #×(µ) = ⌊
δ

2
⌋}

which is given by λ 7→ λ∞. Integral dominant weights for osp(r|2n) are characterized by
(n,m)-hook partitions and thus we restrict the bijection (8) to (n,m)-hook partitions.

Lemma 3.16. The map λ 7→ λ∞ gives rise to a bijections of sets

{(n,m)-hook partitions} →

{

flipped weight diagrams µ such that

#◦(µ) − #×(µ) = ⌊ δ
2

⌋ and

#∨(µ) ≤ min(m, n) − rk(µ)

}

=: Γδ(n,m).

We can transport the equivalence relation on X+(g) × {±} (see Proposition 2.8 and
Proposition 2.11) to Γδ(n,m) × {±}. We denote the set of equivalence classes by
sΓδ(n,m) and call such equivalence classes signed hook weight diagrams. Hence we
have a bijection between X+(G) and sΓδ(n,m). We will abuse notation and write
(λ, ε) for the equivalence class of (λ, ε) in sΓδ(n,m).

Definition 3.17. Two signed hook weight diagrams (λ, ε), (µ, ε′) belong to the same
block if the positions of ◦ and × in λ and µ agree and if ε = ε′ for some representatives
of the respective equivalence classes.
For two signed hook weight diagrams (λ, ε) and (µ, ε′) belonging to the same block, we
have (λ, ε) ≤ (µ, ε′) if µ can be obtained from λ via changing some ∧’s into ∨’s or by
changing ∨∧’s into ∧∨’s.

Remark 3.18. The notion of blocks according to Definition 3.17 agrees with the one
given before Definition 2.4 by [GS10, Section 6] (see also [GS13, Section 4.5]) after
translating their combinatorics to the one of Ehrig and Stroppel using [ES17, Section
6].
For the degree of atypicality from Definition 2.4 for a weight λ ∈ X+(g) (with am ≥ 0
in the notation of Lemma 2.2 if r = 2m), we have at(λ) = min(m,n) − rk(λ∞). The
condition am ≥ 0 in the even case is necessary because for those weights with am < 0
we did not define an associated (n,m)-hook partition. This follows from [GS13, Section
4.5] by translating their combinatorics to our setting.
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Additionally we can see that if such a weight is typical, λ∞ is actually ∨-avoiding
(i.e. no ∨ occurs) as min(m,n) = rk(λ∞) and thus #∨(µ) = 0 by Lemma 3.16.
Furthermore Definition 3.17 agrees with Definition 2.5 under the identifications in
Definition 2.7 and Lemma 3.16 for two weights of the same block.

Given a tensor weight diagram λδ (i.e. a Deligne weight diagram with κ(λδ) ≤ min(n,m)),
we would like to determine the head of the associated indecomposable OSp(r|2n)-
module FRδ(λ). It will turn out that the head is actually irreducible, and its highest
weight can be obtained via the map † defined below.

Definition 3.19. The map † : {tensor weight diagrams} → sΓδ(n,m) is defined as
follows. For a Deligne weight diagram λδ with κ(λδ) = min(m,n) (i.e. FRδ(λ) is

projective), we define λ†
δ

:= (Φ(λ), ε), where Φ(λ) is the weight diagram obtained from
λδ by turning all symbols ∨ corresponding to rays in λδ into ∧’s. In case that δ is
odd, the sign ε is given by + (resp. −) if the parity of the partition λ (under the
bijection from Lemma 3.14) is even (resp. odd). In case that δ is even, the sign ε is
+ (resp. −) if the leftmost ray of λδ is undotted (resp. dotted) and not at position
zero and ε = ± is the leftmost ray is at position zero. For a tensor weight diagram λδ

with κ(λδ) < min(n,m), we define λ†
δ

:= (Φ(λ), ε), where Φ(λ) is given by turning all
symbols corresponding to rays in λδ upside down. The sign is defined in the same way
as for projective tensor weight diagrams if δ is odd. In case that δ is even, we always
set ε = +.

The main result of this section is the classification theorem from [ES21, Theorem 7.8].

Theorem 3.20. Let λ ∈ Λ(d, r, n), then:

(i) The indecomposable summand FRδ(λ) of the OSp(r|2n)-module V ⊗d has irreducible

head isomorphic to L(λ†
δ).

(ii) In particular, if FRδ(λ) is projective, then FRδ(λ) ∼= P (λ†
δ).

(iii) Any indecomposable projective in OSp(r|2n)-mod is obtained in this way for
some λ and d.

We describe all socle/radical layers of FRδ(λ) later in Section 7.

3.4. Super weight diagrams. The “problem” with hook weight diagrams is that
the associated cup diagrams always have infinitely many dotted cups. To define the
Khovanov algebra we “only need” the Deligne weight diagrams λ such that FRδ(λ) is
projective. Up to some technicalities these are the super weight diagrams.

Definition 3.21. Given a signed hook weight diagram (λ, ε) ∈ sΓδ(n,m), we define
the associated super weight diagram λ?

ε as the unique admissible weight diagram µ
with κ(µ) = rk(µ) + def(µ) = min(m,n) such that

• µ is obtained from λ by replacing (infinitely many) dotted cups by two vertical
rays each

• and possibly a dot on the resulting leftmost ray depending on ε according to
the following rule:

– If δ is even, we put a dot on the leftmost ray if ε = + and no dot if ε = −.
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– If δ is odd, we do the following: For each symbol ◦ or × we count the
number of endpoints of rays and cups in λ to the left of this symbol (this
is the same as the number of ∨’s and ∧’s to the left), and take the sum
plus the total number of undotted cups in λ (this equals the number of
∨’s). Let this be s. If s is even, we put a dot on the first ray if ε = + and
no dot if ε = −. If s is odd, we put a dot if ε = − and no dot if ε = +.

If one follows the explicit construction steps, one sees the following (or consult [ES21,
Proposition 8.4])

Proposition 3.22. Let λδ be a Deligne weight diagram associated to a projective

FRδ(λ). We denote the super weight diagram (λ†
δ)?

ε by µ. Then we have that µ and λδ

agree up to a dot on the leftmost ray, and additionally a dot on the cup attached to ⋄
in case there is such a cup.

Remark 3.23. We would like to emphasize here that the rule whether or not to put
a dot, can be altered. We could have also chosen the reverse association, but we
decided to stick with the convention of [ES21, Definition 8.1]. In case of the reverse

association, the analogue of Proposition 3.22 would say that (λ†
δ)?

ε = λδ for a Deligne
weight diagram associated to a projective FRδ(λ).

4. Khovanov algebras and projective functors

Throughout this chapter we fix δ ∈ Z. By a weight diagram we mean a Deligne weight
diagram corresponding to this δ and by a cup or cap diagram, we mean a cup or cap
diagram associated to some Deligne weight diagram for δ.
It was proven by Ehrig–Stroppel [ES21, Theorem 10.5] that there is an equivalence
Ψ of categories between F and eK̃e-mod where eK̃e is a certain subquotient of the
Khovanov algebra K of type B. We will later refine this equivalence in Theorem 6.4.
This equivalence is however not monoidal. That means that we have no direct analogue
of V ⊗d on the Khovanov algebra side. The key idea to overcome this problem is to
look at the endofunctor _ ⊗ V =

⊕

i∈Z+ δ
2

θi and find an endofunctor on the Khovanov

side, which identifies with _ ⊗ V under Ψ.
This approach was also successfully taken by Brundan and Stroppel for gl(m|n) and
the Khovanov algebra of type A in [BS10] and [BS12b]. They defined certain geometric
bimodules Kt

ΛΓ and proved that tensoring with these actually corresponds to _ ⊗V for
gl(m|n).
We follow their ideas and adapt the definitions to the type B setting. Many properties
of K and the geometric bimodules carry over immediately from type A with the same
proof; and in such a case we simply refer to [BS10] for the statements and proofs. A full
account of the theory of geometric bimodules of typeB can be found also in [Neh21]. We
will look at two different versions of geometric bimodules. Ehrig and Stroppel proved in
[ES21, Theorem 6.22] that K is related to Brauer algebras and we will see that tensoring
with this geometric bimodules then corresponds to the i-induction from Definition 2.21
on the Brauer category, for the precise statement consider Theorem 6.3. However, F
is only equivalent to a subquotient of K, called eK̃e here (see [ES21, Theorem 10.5]
or Theorem 6.4). So we also define geometric bimodules for eK̃e. But in this case,
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even though the statements are very similar to [BS10, Sections 3–4], the proofs differ
markedly. In Theorem 6.4 we will see that tensoring with these geometric bimodules
translates to i-translation from Definition 2.22.

Definition 4.1. The Khovanov algebra K is the graded associative algebra with
underlying basis given by all oriented circle diagrams aλb, where aλb is homogeneous
of degree deg(aλb). The multiplication (aλb)(cµd) is defined to be 0 whenever b∗ 6= c
and if b∗ = c we draw the circle diagram (aλb) under the circle diagram (b∗µd),
where we connect the rays of b and b∗ and apply a certain surgery procedure (see
e.g. [ES16a, Section 5][ES17]). All these surgery procedures take a cup-cap-pair and
replace it by straight lines. After every cup-cap-pair is removed, one collapses the
middle section and defines to tbe (aλb)(cµd).

Drawing b∗µd on top of aλb gives a so called oriented stacked circle diagram of height 2.
This can be generalized to arbitrary height by stacking more compatible diagrams (for
details we refer to [ES16a, Section 5.1]). We give the vertices the coordinate (x, l − 1)
if it appears in the l-th diagram at position x for l ∈ Z>0 and x ∈ L. Note that in an
oriented stacked circle diagram the positions of ◦ and × in each of the weight diagrams
agree.
A tag of a stacked circle diagram associates to each circle C a rightmost vertex t(C),
i.e. a vertex such that the horizontal coordinate is maximal among all vertices C. Given
an orientable stacked circle diagram D, a tag t and a coordinate (x, l) such that the
connected component of (x, l) in D is a circle, we define

(9) signD(i, l) = (−1)#{j|γj is a dotted cup/cap},

where γ1, . . . , γt is a sequence of arcs in D such that their concatenation is a path from
(i, l) to t(C). This sign is actually independent of the chosen tag t and the sequence of
arcs. A proof of this can be found in [ES16a, Lemma 5.7].

Definition 4.2. A circle C in an oriented stacked circle diagram is oriented clockwise
if the symbol at t(C) is ∨ and anticlockwise if it is ∧. A line is always oriented
anticlockwise by convention.

For any Deligne weight diagram λ the circle diagram eλ := λλλ is an idempotent
in K and eλeµ = 0 whenever λ 6= µ. This gives the algebra K =

⊕

λ,µ∈Λδ
eλKeµ the

structure of a locally unital algebra. By modlf (K) we refer to locally finite dimensional
graded modules over K, i.e. graded modules M such that dim eλM < ∞ for all λ ∈ Λδ.
The irreducible locally finite dimensional K-modules are in bijection with Λδ. Given
λ ∈ Λδ we construct a one dimensional irreducible K-module L(λ) as follows. As a
vector space it is just C and eµ acts by 1 if λ = µ and 0 otherwise. The indecomposable
projective objects in modlf (K) are given by P (λ) := Keλ for λ ∈ Λδ.
We have an anti-involution ∗ on K which is given by sending aλb to b∗λa∗. And this
gives rise to a duality (also denoted ∗) on modlf (K). For a locally finite dimensional
graded K-module M , we define the graded piece (M⊛)j := HomC(M−j ,C) and x ∈ K
acts on f ∈ M⊛ by (xf)(m) := f(x∗m). We also easily see that L(λ)⊛ = L(λ).
The indecomposable injective objects are then Iδ(λ) := (P (λ))⊛ for λ ∈ Λδ.
Furthermore, we define standard modules V (µ) for µ ∈ Λδ. These are the cell modules
associated to the cellular structure (in the sense of [GL96]) of K in [ES16a, Theorem
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7.1]. As a vector space it has a basis given by formal symbols (γµ| for all γ ∈ Λδ such
that γµ is oriented. The multiplication is defined as

(10) (aλb)(γµ| =

{

saλb(µ)(aµ| if b 6= γ and aµ is oriented,

0 otherwise,

where saλb(µ) is either the coefficient from [ES16a, Thm. 7.1] or as in [BS10, Theorem
3.1].The standard module V (µ) is also the quotient of P (µ) and the K-submodule
generated by all oriented circle diagrams aλµ with λ 6= µ (then we necessarily have
λ > µ). The irreducible module L(µ) is the quotient of V (µ) and the K-submodule
generated by all (γµ| with γ 6= µ (and hence γ > µ).

Theorem 4.3. [HNS, Theorem 4.5] The category modlf (K) is an upper finite highest
weight category in the sense of [BS] with standard objects V (λ), λ ∈ Λδ.

4.1. Geometric bimodules. In this section we generalize the diagrammatics of Khovanov’s
arc algebra by incorporating crossingless matchings (of type B). This section proves
furthermore analogous results to [BS10, Sections 2–4] and many ideas from the proofs
there can be directly applied to our setting.
A crossingless matching is a diagram t, which is obtained by drawing an admissible
cap diagram c underneath an admissible cup diagram d and connecting the rays in c to
the rays in d from left to right. This means that we allow dotted cups, caps and lines
but each dot necessarily needs to be able to be connected to the left boundary without
crossing anything, just as in the case of admissible circle diagrams (see [ES16a, Def.
3.5]). Furthermore we delete pairs of dots on each segment, such that each line segment
contains at most one dot. Any crossingless matching is a union of (dotted) cups, caps
and line segments, for example:

We denote by cups(t) respectively caps(t) the number of cups respectively caps in t.
Furthermore let t∗ be the horizontally reflected image of t.
We say that t is a ΛΓ-matching if the bottom and top number lines of t agree with
the number lines of Λ respectively Γ. More generally, given a sequence of blocks
Λ = Λk . . .Λ0, we define a Λ-matching to be a diagram t = tk . . . t1 obtained by glueing
a sequence t1, . . . , tk of crossingless matchings together from top to bottom such that

• each ti is a ΛiΛi−1-matching for each i = 1, . . . , k,
• the free vertices at the bottom of ti are in the same position with the free

vertices at the top of ti+1 for i = 1, . . . , k − 1.

Given additionally a cup diagram a and a cap diagram b such that their number lines
agree with the bottom number lines of tk respectively the top number line of t1, we can
glue them together and obtain a Λ-circle diagram atb = atk . . . t1b.
Let Λ and Γ be blocks and let t be a ΛΓ-matching. Given weights λ ∈ Λ and µ ∈ Γ we
can glue these together from bottom to top to obtain a new diagram λtµ. We call this
an oriented ΛΓ-matching if
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• each pair of vertices lying on the same dotted cup or the same undotted line
segment is labeled such that both are either ∨ or both are ∧,

• each pair of vertices lying on the same undotted cup or the same dotted line
segment is labeled such that one is ∨ and one is ∧,

• all other vertices are labeled ◦ or ×.

A diamond ⋄ can be interpreted as either ∨ or ∧.
More generally an oriented Λ-matching for a sequence of blocks Λ = Λk . . .Λ0 is a
composite diagram of the form

t[λ] = λktkλk−1 . . . λ1t1λ0

where λ = λk . . . λ0 is a sequence of weights such that λitiλi−1 is an oriented ΛiΛi−1-
matching for each i = 1, . . . k.
Finally given an oriented Λ-matching and cap and cup diagrams a and b such that aλk

(resp. λ0b) is an oriented cup (resp cap) diagram we can glue these together to obtain
an oriented Λ-circle diagram at[λ]b.
We call a Λ-matching t proper if there exists at least one oriented Λ-matching for t.
By a rightmost vertex x on a circle C we mean a vertex lying on C such that on this
numberline, there is no vertex to the right of x. In the bottom picture every rightmost
vertex is marked by x.

x

x

x

We refer to a circle in an oriented Λ-diagram as clockwise respectively anticlockwise if
a rightmost vertex on the circle is labeled ∨ respectively ∧. It can be checked similarly
to [ES16a, Corollary 5.9] that this notion is well-defined.

Lemma 4.4. Let at[λ]b be an oriented Λ-circle diagram and let C be a closed component
of this diagram. Then the rightmost vertices of C all have the same orientation.

Proof. Take two rightmost vertices x and y in a circle c and assume that x 6= y. Then
there are exactly two paths connecting x with y in C. The crucial observation is that
the “right” one of them is cut off by the other one from the left boundary of the diagram
and thus cannot contain any dots. Without loss of generality assume that y appears
on a lower number line as the picture indicates.

C1
C2

x

y
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One of the paths leaves the vertex y to the top (C2) and one to the bottom (C1). Note
that C1 has to cross the number line of y again but by our assumption this happens to
the left of y. Then this paths always stays to the left of C2, hence C2 is “cut off” by C1.
So C2 cannot contain any dots as otherwise those could not be connected to the left
boundary (contradicting the admissiblity assumption in the definition of crossingless
matching). By a similar reasoning C2 is also the path which enters x from the bottom
and hence C2 has to contain an even number of cups which are all undotted. So the
symbol (∨ or ∧) gets changed an even number of times, when moving from y to x along
C2 and thus the orientations agree. �

Definition 4.5. The degree of a circle or a line in an oriented Λ-circle diagram is the
total number of clockwise cups or caps that it contains. The degree of an oriented
Λ-circle diagram is the sum of the degrees of each of its circles and lines. We call a
circle only consisting of one cup and one cap a small circle.

The following lemma can be verified similar to [ES16a, Proposition 1.2.12, Proposition
1.2.13].

Lemma 4.6. The degree of an anticlockwise circle in an oriented Λ-circle diagram is
one less than the total number of caps (equivalently, cups) that it contains. The degree
of a clockwise circle is one more than the total number of caps (equivalently, cups) that
it contains. The degree of a line is equal to the number of caps or the number of cups
that it contains, whichever is greater.

Definition 4.7. Suppose we have a Λ-matching t = tk . . . t1 for some sequence Λ =
Λk . . .Λ0 of blocks. We refer to circles in t not meeting the top or bottom number
line as internal circles. The reduction of t is the ΛkΛ0-matching which is obtained by
removing all internal circles, all but the top and bottom number line and maintaining
the parity of dots on each component.

Lemma 4.8. Assume that at[λ]b is an oriented Λ-circle diagram for some sequence
λ = λk . . . λ0 of weights. Let u be the reduction of t. Then aλkuλ0b is an oriented
ΛkΛ0-circle diagram and

deg(at[λ]b) = deg(aλkuλ0b) + caps(t1) + · · · + caps(tk) − caps(u) + p− q

= deg(aλkuλ0b) + cups(t1) + · · · + cups(tk) − cups(u) + p− q,

where p (resp. q) denotes the number of internal circles of t that are clockwise (resp. anticlockwise)
in the diagram at[λ]b.

Proof. See [BS10, Lemma 2.3]. �

Definition 4.9. Let t be a ΛΓ-matching for some blocks Λ and Γ. Let a be a cup
diagram such that its number line agrees with the bottom one of t. We refer to circles or
lines not meeting the top number line in at as lower circles or lines. The lower reduction
of at refers to the cup diagram which is obtained by removing all lower circles and lines
as well as the bottom number line.
Similarly if b is a cap diagram whose number line agrees with the top one of t, we call
each circle or line not meeting the bottom number line upper circle or line. Similarly
the upper reduction of bt means removing all upper lines or circles and the top number
line.
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Lemma 4.10. ([HNS, Lemma 5.5]) If aλtµb is an oriented ΛΓ-circle diagram and c is
the lower reduction of at, then cµb is an oriented circle diagram and

deg(aλtµb) = deg(cµb) + caps(t) + p− q,

where p (resp. q) is the number of lower circles that are clockwise (resp. anticlockwise)
in the diagram aλtµb. For the dual statement about upper reduction one needs to replace
caps(t) by cups(t).

Definition 4.11. Let Λ = Λk . . .Λ0 be a sequence of blocks, and let t = tk . . . t1 be a
Λ-matching. Define Kt

Λ
to be the graded vector space with homogeneous basis

{(at[λ]b) | for all closed oriented Λ-circle diagrams at[λ]b}.

Define a degree preserving linear map

(11) ∗ : Kt
Λ → Kt∗

Λ∗ , (at[λ]b) 7→ (b∗t∗[λ∗]a∗),

where Λ∗ = Λ0 . . .Λk, λ∗ = λ0 . . . λk, t∗ = t∗1 . . . t
∗
k and t∗i , a∗ and b∗ denote the mirror

images of ti, a, b in the horizontal axis.

Let Γ = Γl . . .Γ0 be another sequence of blocks with Λ0 = Γl. We denote by Λ ≀ Γ the
block sequence Λk . . .Λ1Γl . . .Γ0. Observe that one copy of Λ0 is left out in comparison
to the concatenation of the block sequences. Furthermore note that if u = ul . . . u1 is
a Γ-matching the concatenation tu = tk . . . t1ul . . . u1 is a Λ ≀ Γ-matching. We then
define a degree preserving linear multiplication

(12) m : Kt
Λ ⊗Ku

Γ → Ktu
Λ≀Γ

as follows. The product (at[λ]b)(cu[µ]d) is defined to be 0 whenever b 6= c∗. In the case
b = c∗ we draw (at[λ]b) underneath (cu[µ]d) and we then smooth out the symmetric
middle section using surgery procedures exactly as in the Khovanov algebra K of type
B. Then we collapse the middle section by identifying the number lines adjacent to
the middle section and declaring the product to be this sum of oriented Λ ≀ Γ-circle
diagrams. That this is well-defined and homogeneous of degree 0 can be verified in the
same manner as in [ES16a, Section 5].
In the special case k = l = 0 this simplifies to the ordinary multiplication in the
Khovanov algebra K of type B. Additionally, given a third sequence of blocks Υ with
Υ0 = Λk, this multiplication is associative in the sense that the following diagram
commutes, which again can be verified analogously to [ES16a, Section 5]:

(13)

Ks
Υ

⊗Kt
Λ

⊗Ku
Γ

Ks
Υ

⊗Ktu
Λ≀Γ

Kst
Υ≀Λ

⊗Ku
Γ

Kstu
Υ≀Λ≀Γ

1⊗m

m⊗1 m

m

Finally the linear map ∗ is antimultiplicative in the sense that the following diagram
commutes (P denotes the flip x⊗ y 7→ y ⊗ x):
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(14)

Kt
Λ

⊗Ku
Γ

Ku∗

Γ∗ ⊗Kt∗

Λ∗

Ktu
Λ≀Γ

Ku∗t∗

Γ∗≀Λ∗

P ◦(∗⊗∗)

m m

∗

Remark 4.12. Letting Υ = Λk and Γ = Λ0 we see by (13) that the multiplication m
turns Kt

Λ
into a (KΛk

,KΛ0
)-bimodule.

Recalling the primitive idempotents eα ∈ KΛk
and eβ ∈ KΛ0

, we have that

eα(at[λ]b) =

{

(at[λ]b) if α = a,

0 otherwise,
(15)

(at[λ]b)eβ =

{

(at[λ]b) if β = b,

0 otherwise.
(16)

Using these definitions many statements from [BS10] and [BS12a] carry over verbatim,
namely [BS10, Theorem 3.1, Corollary 3.2 and 3.3, Theorem 3.5 and 3.6], see also
[Neh21] for a detailed verification in our type B case. In particular, the analog of
[BS10, Theorem 3.6] allows us to reduce the study of bimodules Kt

Λ
for arbitrary

sequences Λ = Λk . . .Λ0 and t = tk . . . t1 to the bimodulesKt
ΛΓ for a single ΛΓ-matching

t, markedly simplifying our notation. In other words, in order to understand Kt
Λ

as a
bimodule, it actually suffices to understand the bimodule Ku

ΛkΛ0
instead. This justifies

why we are restricting ourselves to the latter case in the following section.

4.2. Projective functors. In this section we develop the theory of projective functors
and compute their effect on simple, standard and projective modules.

Definition 4.13. Let t be a proper ΛΓ-matching. Define the functor

Gt
ΛΓ := Kt

ΛΓ〈− caps(t)〉 ⊗ _: modlf (KΓ) → modlf (KΛ).

We call any functor which is isomorphic to a finite direct sum of the above functors
(possibly shifted) a projective functor.

Remark 4.14. The degree shift in the definition ensures that Gt
ΛΓ commutes with

duality, see [BS10, Theorem 4.10] (which will hold in type B as well). Furthermore
[BS10, Theorem 3.5] [BS10, Theorem 3.6] imply that the composition of projective
functors is again projective.

In most statements the additional dots do not play a role and we can therefore apply
the theory of [BS10]. It can then be immediately verified that [BS10, Lemma 4.1],
[BS10, Theorem 4.2] (noting that the map f : Kt

ΛΓeγ → KΛeλ ⊗ R⊗n is KΛ-linear as
every tag gets altered by an even number of undotted arcs (see Lemma 4.4)), [BS10,
Corollary 4.3] and [BS10, Theorem 4.5] (see also [HNS, Theorem 5.11]) and their proofs
carry over verbatim. In particular we have a description of the grading filtration of the
KΛ-module Gt

ΛΓV (γ).
We would like to analyse the effect of projective functors on irreducible modules. For
this we are interested in proving that the projective functors Gt

ΛΓ and Gt∗

ΓΛ form up
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to degree shift an adjoint pair (as in [BS10, Section 4] for type A), so that we can
understand the composition factors of Gt

ΛΓL(γ) in terms of Gt∗

ΓΛP (µ). For this we
define a linear map

(17) φ : Kt∗

ΓΛ ⊗Kt
ΛΓ → KΓ

by declaring that φ := 0 if t is not a proper ΛΓ-matching. If t is proper and given basis
vectors (aλt∗νd) ∈ Kt∗

ΓΛ and (d′κtµb) ∈ Kt
ΛΓ, we denote by c the upper reduction of

t∗d. Then if d′ = d∗ and all mirror image pairs of upper respectively lower circles in
t∗d respectively d∗t are oriented in opposite ways in the corresponding basis vectors,
we set

(18) φ((aλt∗νd) ⊗ (d′κtµb)) := ±(aλc)(c∗µb)

and otherwise we set φ((aλt∗νd) ⊗ (d′κtµb)) := 0. The sign in (18) depends only on t
and d and is defined inductively by the argument given in the next proof, i.e. by the
induction argument in the next proof one can reconstruct the sign for each t and d.

Lemma 4.15. The map φ : Kt∗

ΓΛ ⊗ Kt
ΛΓ → KΓ is a homogeneous (KΓ,KΓ)-bimodule

homomorphism of degree −2 caps(t). Moreover it is KΛ-balanced and thus induces a
map φ : Kt∗

ΓΛ ⊗KΛ
Kt

ΛΓ → KΓ.

Remark 4.16. This lemma is analogous to [BS10, Lemma 4.6] but considerably harder
to prove due to the appearance of additional sign factors.

Proof. If t is not a proper ΛΓ-matching the claim is trivial, thus we assume in the
following that t is proper.
First of all, we are going to show that φ is homogeneous of degree −2 caps(t). For this
take again basis vectors as in (18) (in every other case φ is 0 by definition). Suppose
that p (resp. q) of the upper circles in t∗d are oriented clockwise (resp. anticlockwise)
in aλt∗νd. Then by our assumptions on the basis vectors q (resp. p) of the lower circles
in d∗t are oriented clockwise (resp. anticlockwise) in d∗κtµb. By Lemma 4.10 we have

deg(aλt∗νd) = deg(aλc) + cups(t∗) + p− q and

deg(d∗κtµb) = deg(c∗µb) + caps(t) + q − p.

By definition of t∗, we have cups(t∗) = caps(t), thus

(19) deg((aλt∗νd) ⊗ (d∗κtµb)) = deg((aλc)(c∗µb)) + 2 caps(t).

Secondly, the map φ is a left KΓ-homomorphism as in the proof of [BS10, Theorem
4.2], which showed that mapping (aλt∗νd) to (aλc) is a left KΓ-homomorphism, and
one argues similarly for the right action.
Lastly we are going to prove that φ is KΛ-balanced. For this we introduce the map

ω : Kt∗t
ΓΛΓ → KΓ

as follows. Take a basis vector (aλt∗µtνb) ∈ Kt∗t
ΓΛΓ. If any of its internal circles in the

diagram t∗t are oriented anticlockwise, we declare that its image is 0. Otherwise we
define u to be the reduction of t∗t and consider the diagram aλuνb. This contains a
symmetric middle section as u was the reduction of the symmetric diagram t∗t, so it
makes sense to apply the surgery procedure to smooth this section out and obtain a
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linear combination of basis vectors of KΓ. We define the image of (aλt∗µtνb) to be this
linear combination. We claim that

(20) φ = ω ◦m,

where m is the multiplication map m : Kt∗

ΓΛ ⊗ Kt
ΛΓ → Kt∗t

ΓΛΓ from (12). As we know
that m is KΛ-balanced (by associativity), this shows that φ is KΛ-balanced.
In some sense, we are trying to prove that first reducing and then multiplying (φ)
is “the same as” first multiplying and then reducing (ω ◦ m). The general idea of the
proof is to replace t∗d by some easier t∗1d1 (for which we know the claim) such that both
have the same upper reduction, and then trying to show that ω((aλt∗νd)(d∗κtµb)) =
ω((aλt∗1ν1d1)(d∗

1κ1t1µb)). But in general, the above equality holds only up to sign and
that is why we incorporated a sign in the definition of φ.
To prove the claim, we proceed by induction on caps(t). If caps(t) = 0, then there
are neither upper circles in t∗d nor internal circles in t∗t. Thus in this case applying
the upper reduction to t∗d gives a bijection between the caps in t∗d and the caps in c,
which is just given by reducing straight lines in t∗d. Hence the signs involved in surgery
procedures will exactly be the same. Computing φ(aλt∗νd) ⊗ (d∗κtµb) = (aλc)(c∗µb)
means that every cap in c gets eliminated by surgeries. On the other hand applying m
eliminates each cap in d and ω eliminates then the remaining caps in t∗. Thus by the
above comment, the results are the same.
For the induction step assume caps(t) > 0 and that (20) is proven for all smaller cases.
We will consider five different cases depending on certain subpictures of t∗d, the last
one being the general case.
Case 1: Suppose that t∗d contains a small circle, i.e. a circle consisting of only one cap
and cup. If this circle in t∗νd and its mirror image in d∗κt are oriented in the same
way, then φ gives 0 by definition. On the other hand (aλt∗νd)(d∗κtµb) produces 0 if
both are oriented clockwise and the product produces an anticlockwise circle if both
were oriented anticlockwise, but in this case ω produces 0. Thus we may assume that
these two circles are oriented in opposite ways in t∗νd and d∗κt. Now we can remove
these two circles (and the vertices involved) to obtain diagrams aλt∗1ν1d1 and d∗

1κ1t1µb
with caps(t1) < caps(t). Using the definitions, one can easily verify that

φ((aλt∗νd) ⊗ (d∗κtµb)) = φ((aλt∗1ν1d1) ⊗ (d∗
1κ1t1µb)),

ω((aλt∗νd)(d∗κtµb)) = ω((aλt∗1ν1d1)(d∗
1κ1t1µb)).

The first equality holds because the small circle is removed in the process of upper
reduction, and thus it does not matter whether we remove it in the process of upper
reduction or whether we remove it first and do the upper reduction after that. The
second equality holds as merging the two small circles in a surgery for the left hand
side produces exactly one small clockwise circle with no further signs, which then gets
removed by ω. But these circles play no role for the other surgeries, hence it agrees
with the right hand side. Using the induction hypothesis the right hand sides coincide,
thus the left hand sides agree as well.
Case 2: Suppose that t∗d contains an upper line containing only one cup. Denote by
aλt∗1ν1d1 and d∗

1κ1t1µb the diagrams where this upper line and its mirror image in d∗t
get removed. When computing the product (aλt∗νd)(d∗κtµb) one can apply the same
surgery procedures as for (aλt∗1ν1d)(d∗κ1t1µb). There is no further surgery needed
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as the upper line contains only one cup. Now notice that, when drawing (aλt∗νd)
underneath (d∗κtµb) the upper line and its mirror image form a clockwise circle. This
is not changed throughout the whole surgery procedure and (aλt∗νd)(d∗κtµb) and
(aλt∗1ν1d)(d∗

1κ1t1µb) differ only by this clockwise circle, which is removed when applying
ω. And as both of them clearly have the same upper reduction (upper lines get removed
in this process) we get

φ((aλt∗νd) ⊗ (d∗κtµb)) = φ((aλt∗1ν1d1) ⊗ (d∗
1κ1t1µb)) = ω((aλt∗1ν1d1)(d∗

1κ1t1µb))

= ω((aλt∗νd)(d∗κtµb)).

Case 3: Suppose then that t∗d contains one of the following local pictures on the top
number line of t∗d with a mirror image in d∗t. A dashed dot means that there may be
a dot present and different dashing patterns correspond to different choices whether a
dot is present or not. In any case, the parity of the number of dots stays the same.

d

t∗
(a)

d

t∗
(b)

d

t∗
(c)

d

t∗
(d)

Denote by aλt∗1ν1d1 and d∗
1κ1t1µb the diagrams obtained by straightening these curved

lines as in the picture above. We are then again in the situation that caps(t1) <
caps(t). In order to compute (aλt∗νd)(d∗κtµb) we can apply exactly the same surgery
procedures in the same order as for (aλt∗1ν1d1)(d∗

1κ1t1µb) and apply an additional one
somewhere in the middle, which involves these curved lines we straightened. Figure 2
shows this additional surgery. Note that the dashed dots in the reduction process
appear directly beneath each other when multiplying, thus they appear in pairs and
get removed at the beginning of the multiplication process. Up to the point of the

Figure 2. Additional surgeries for t∗d: Case 3
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additional surgery procedure, the results of the surgeries applied so far is the same
(except in the local spot that we changed). The additional surgery procedure is a
split and produces one extra internal circle. We can concentrate on the case where
this circle is oriented clockwise, as otherwise ω produces 0. But in this case the other
component is oriented in the same way as before, thus leaving ourselves only with a few
possible signs. Looking at the definition of the surgery procedure Split, one gets that
the involved signs are (−1)p(i)+1 in all four cases. After this all the remaining surgeries
produce exactly the same result (except for the additional circle produced by the split).
This circle does not get altered by any other surgery and is later removed by ω. Thus
we have ω((aλt∗νd)(d∗κtµb)) = (−1)p(i)+1ω((aλt∗1ν1d1)(d∗

1κ1t1µb)). On the other hand
t∗d and t∗1d1 clearly have the same upper reduction. Defining the involved sign in the

definition of φ to be exactly (−1)p(i)+1 times the sign associated to t∗1d1, we conclude
φ((aλt∗νd) ⊗ (d∗κtµb)) = φ((aλt∗1ν1d1) ⊗ (d∗

1κ1t1µb)), thus finishing this case.
Case 4: Suppose that t∗d contains one of the following subpictures.

d

t∗
(a)

t∗
d

(b)

We can apply the indicated reduction and we denote the reduced diagrams by aλt∗1ν1d1

and d∗
1κ1t1µb respectively. Let us first look at the second case. The computation of

(aλt∗νd)(d∗κtµb) involves applying the same surgery procedures as for (aλt∗1ν1d1)(d∗
1κ1t1µb)

and one additional surgery at the end. These first surgeries are actually the same
because the orientations of every component agree and the tags are the same, as in this
case we change two undotted cups and a cap into an undotted cup. Then in the end
we apply the following surgery procedure: the circle which gets split is either oriented
anticlockwise or clockwise, but it has the same orientation as the one in the reduced
picture (on the right). This last additional surgery is a split and it either splits an

Figure 3. Additional surgery for t∗d in contrast to t∗1d1: Case 4a

anticlockwise or a clockwise circle. If the circle is oriented anticlockwise, it produces
the sum of two basis vectors and in each of these, one circle is oriented anticlockwise.
Thus ω produces 0 and in the reduced picture (see right hand side of Figure 3) we also
have an anticlockwise circle and hence ω produces 0 there as well. All together we have
(as both pictures have the same upper reduction)

φ((aλt∗νd) ⊗ (d∗κtµb)) = φ((aλt∗1ν1d1) ⊗ (d∗
1κ1t1µb)) = ω((aλt∗1ν1d1)(d∗

1κ1t1µb))
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= 0 = ω((aλt∗νd)(d∗κtµb)).

If on the other hand the circles is oriented clockwise, the split produces exactly two
clockwise circles and the involved sign is (−1)p(i)+1. In the end comparing (aλt∗νd)(d∗κtµb)

with (aλt∗1ν1d1)(d∗
1κ1t1µb), we see that both agree up to the sign (−1)p(i)+1 and clockwise

internal circles. But these internal clockwise circles get removed by ω, hence we get up
to the sign the same result

ω((aλt∗νd)(d∗κtµb)) = (−1)p(i)+1ω((aλt∗1ν1d1)(d∗
1κ1t1µb)).

On the other hand both pictures have the same upper reduction and thus defining the
involved sign for t∗d to be (−1)p(i)+1 times the one associated to t∗1d1 we get

φ((aλt∗νd) ⊗ (d∗κtµb)) = (−1)p(i)+1φ((aλt∗1ν1d1)(d∗
1κ1t1µb)).

As caps(t1) < caps(t) we are done by induction.
Now for the last case we again have the same surgeries for (aλt∗νd)(d∗κtµb) and
(aλt∗1ν1d1)(d∗

1κ1t1µb) and an additional one for (aλt∗1ν1d1)(d∗
1κ1t1µb) and two additional

ones for (aλt∗νd)(d∗κtµb) somewhere in the middle (but for both at the same point)
(see Figure 4). Up to this point the applied surgery procedures again give the same

Figure 4. The additional surgeries for t∗d in contrast to t∗1d1: Case 4b

result, as the component which is reduced is oriented in the same way as before and no
sign involved in the multiplication process gets changed. Both first additional surgeries
are of the same type and produce the same diagram just differing in this local spot
(see Figure 4) and maybe some additional signs. By looking at the definition of the
multiplication one sees that the upcoming signs in a merge or a split turn out to be the
same and for a reconnect at least one line would not be nonpropagating by admissibility,
thus the results would be 0 anyway. The second additional surgery is then splitting off
the circle in the middle in Figure 4. If the component is oriented clockwise, the split
produces two clockwise oriented components and the involved sign is (−1)p(i). So up
to the sign and this clockwise oriented circle in between, the linear combinations agree.
But ω removes the clockwise circle. If the component is oriented anticlockwise, the split
produces a sum of two diagrams. In one the extra circle is oriented anticlockwise but
then ω would produce 0. So we can concentrate on the summand, where the extra circle
is oriented clockwise. Then the other component is necessarily oriented anticlockwise
(and thus as before) and the involved sign is (−1)p(i).
All surgeries applied after these ones yield the same results, thus one finishes with
the same linear combination of diagrams all just multiplied by (−1)p(i). Again just
as before the upper reduction of the reduced and the original picture is the same and
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furthermore caps(t1) < caps(t), and defining the sign for φ accordingly, we are done by
induction and finished with this case.
Case 5: In the general setting, we may assume (using the base case of the induction,
Case 1 and Case 2 ) that we have cups in t∗ but neither a small circle in t∗d nor an
upper line containing only one cup. Then we have to have one of the subpictures

where a dashed dot means that a dot can be present or not. We may assume that we
choose a picture such that the horizontal distance between the endpoints is minimal.
This means that no attached cup or cap can end “inside” the cap or cup of the
subpicture, i.e. one endpoint is at one of the dashed lines and the other one is either
to the left or to the right of the picture. First observe that there cannot be two
dots because then the picture would not be admissible, as the left dashed line would
necessarily cut off one of the dots from the left boundary. If no dot is present we are
either in Case 3a or Case 3b. If one dot is present, Figure 5 makes a case distinction
between which of the arcs is dotted and what happens on the dotted line attached to
the undotted arc. This concludes the proof as in each case we can apply one of Case 3
and Case 4 and for those we have seen the claim before.

3a 4a

3b 4b 3d

3b 4b

3a 4a 3c

Figure 5. Case distinction for the general case

�

With this key lemma at hand, the statements and proofs of [BS10, Theorem 4.7],
[BS10, Corollary 4.8], [BS10, Corollary 4.9], [BS10, Theorem 4.10], [BS10, Theorem
4.11] and [BS10, Corollary 4.12] follow (see also [Neh21]).

5. Nuclear diagrams and projective functors

In this section we are going to introduce nuclear circle diagrams, define an analogue of
the projective functors incorporating nuclear diagrams and study these. These nuclear
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circle diagrams do not appear in type A, hence we give mostly complete proofs from
now on.

Definition 5.1. A nuclear circle diagram aλb ∈ KΛ is an oriented circle diagram with
at least one nonpropagating line. We denote by IΛ ⊆ KΛ the span of all nuclear circle
diagrams.

Lemma 5.2. The vector space IΛ is a two-sided ideal in KΛ.

Proof. This is [ES16a, Proposition 5.3]. �

Using Lemma 5.2 above, we get an induced multiplication on K̃Λ := KΛ/IΛ turning
this into a graded algebra. As for K, the eλ, λ ∈ Λ (or rather their equivalence
classes) provide a set of local units. Thus in this algebra the simple modules are again
characterized by λ ∈ Λ. They are one-dimensional and eλ acts by 1 and every other
circle diagram by 0. Furthermore the projective indecomposable modules are given
by (KΛ/IΛ)eλ and these are in fact self-dual and hence prinjective (see [ES17, Section
II.4]). We will denote the simple and the projective indecomposable modules by L(λ)
respectively P (λ). The statement from [ES16b, Theorem 6.10] that K is generated in
degrees 0 and 1 directly gives us the following result.

Lemma 5.3. The algebra K̃ is generated in degrees 0 and 1.

On the next pages, we are going to extend the notion of nuclear morphisms to Λ-circle
diagrams and for this we fix notation as follows. Let Λ = Λk . . .Λ0 and Γ = Γl . . .Γ0

be sequences of blocks such that Λ0 = Γl. Let t = tk . . . t1 (resp. u = ul . . . u1)
be an oriented Λ-matching (resp. Γ-matching). As before denote the block sequence
Λk . . .Λ1Γl . . .Γ0 by Λ ≀ Γ and let tu = tk . . . t1ul . . . u1.

Definition 5.4. An oriented Λ-circle diagram is called nuclear if it contains at least one
nonpropagating strand. Denote the span of these circle diagrams by I

t
Λ

. Furthermore
we will abbreviate K̃t

Λ
:= Kt

Λ
/It

Λ
.

Lemma 5.5. The multiplication m from (12) induces a degree preserving map

m̃ : K̃t
Λ ⊗ K̃u

Γ → K̃tu
Λ≀Γ

which is associative and antimultiplicative in the same sense as in (13) and (14).

Proof. By the definition of the multiplication it is easy to see that under m, It
Λ

⊗ Ku
Γ

and Kt
Λ

⊗ I
u
Γ

are sent to I
tu
Λ≀Γ

, and thus the multiplication factors as claimed. It is

degree preserving because m is and the subspaces I
t
Λ

are homogeneous by definition.
Antimultiplicativity and associativity follow directly from the analogous statements for
m. �

Remark 5.6. In the special case that u is empty (and using the mirrored argument),
we see that I

t
Λ

is a (KΛk
,KΛ0

)-bisubmodule of Kt
Λ

. In the subcase that t and u are
empty we recover Lemma 5.2.

Lemma 5.7. The map m̃ is K̃Λ0
-balanced and thus induces a map

m̃ : K̃t
Λ ⊗K̃Λ0

K̃u
Γ → K̃tu

Λ≀Γ

which is in fact an isomorphism.
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Proof. That it is K̃Λ0
-balanced follows from the associativity of m̃ and hence it factors

as desired.
In order to see that m̃ is an isomorphism, note that it is surjective because m is. For
injectivity we first prove that the restriction of the multiplication map I

t
Λ

⊗C K
u
Γ

+
Kt

Λ
⊗C I

u
Γ

→ I
tu
Λ≀Γ is surjective. For this let a(tu)[ν]b ∈ I

tu
Λ≀Γ

. Define λ := νk+l . . . νl

and µ′ := νl . . . ν0. Without loss of generality we may assume that one nonpropagating
line ends at the bottom. Define c to be the upper reduction of u[µ′]b. Hence by
definition of the upper reduction, at[λ]c contains a nonpropagating line, hence we have
at[λ]c ∈ I

t
Λ

. By definition of the upper reduction c∗u[µ′]b is oriented. We define µ to
be the same as µ′ except that all components in c∗ub which lie partly in c∗ are oriented
anticlockwise. We claim then that (at[λ]c)(c∗u[µ]b) = ±a(tu)[ν]b. Observe that every
surgery that needs to be applied is a merge and it always merges a component in at[λ]c
with an anticlockwise circle in c∗u[µ]b. But this means that the vertices belonging to
the anticlockwise circle in c∗u[µ]b are exactly reoriented to agree with the parts in ν.
Thus the surgery procedure produces up to possibly a sign the circle diagram a(tu)[ν]b,
which finishes the proof of the claim.
Now consider the following commutative diagram (the horizontal maps are all induced
by the multiplication)

I
t
Λ

⊗C K
u
Γ

+Kt
Λ

⊗C I
u
Γ

I
tu
Γ≀Λ

Kt
Λ

⊗C K
u
Γ

Kt
Λ

⊗KΛ0
Ku

Γ
Ktu

Λ≀Γ

K̃t
Λ

⊗C K̃
u
Γ

K̃t
Λ

⊗K̃Λ0

K̃u
Γ

K̃tu
Λ≀Γ

m̄

m̃ .

The right and the left column are both short exact by definition and the map m̄ is an
isomorphism by [BS10, Theorem 3.5].
Now suppose x ∈ K̃t

Λ
⊗K̃Λ0

K̃u
Γ

is mapped to 0 by m̃. Lift this to an element x′ ∈

Kt
Λ

⊗C K
u
Γ

. As m̃(x) = 0 we must have m(x′) ∈ I
tu
Λ≀Γ

. By the above claim we find

some x′′ ∈ I
t
Λ

⊗C K
u
Γ

+ Kt
Λ

⊗C I
u
Γ

such that m(x′′) = m(x′). Hence they agree in
Kt

Λ
⊗KΛ0

Ku
Γ

as m̄ is an isomorphism by [BS10, Theorem 3.5(iii)], and thus they also

agree in K̃t
Λ

⊗K̃Λ0

K̃u
Γ

. But as x′′ ∈ I
t
Λ

⊗CK
u
Γ

+Kt
Λ

⊗C I
u
Γ

it becomes 0 in K̃t
Λ

⊗K̃Λ0

K̃u
Γ

and as x′ was a lift of x we have 0 = x ∈ K̃t
Λ

⊗K̃Λ0

K̃u
Γ

. Thus m̃ is injective, finishing

the proof. �

Theorem 5.8. Let t = tk . . . t1 be a proper Λ-matching. Denote the reduction of t by
u and let n be the number of internal circles getting removed in the reduction process.
Then we have

K̃t
Λ

∼= K̃u
ΛkΛ0

⊗R⊗n〈caps(t1) + · · · + caps(tk) − caps(u)〉

∼= K̃u
ΛkΛ0

⊗R⊗n〈cups(t1) + · · · + cups(tk) − cups(u)〉
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as graded (K̃Λk
, K̃Λ0

)-bimodules, viewing K̃u
ΛkΛ0

⊗R⊗n as a bimodule via acting on the
first tensor factor.

Proof. Follow the proof of [BS10, Theorem 3.6] by observing that atb contains a
nonpropagating line if and only if aub does and using that It

Λ
is a (KΛk

,KΛ0
)-bisubmodule

of Kt
Λ

by the proof of Lemma 5.5. �

Definition 5.9. A ΛΓ-matching is called a translation diagram if the difference of the
numbers of ◦’s and ×’s in Λ (resp. Γ) agrees. A Λ-matching t = tk . . . t1 is called a
translation diagram if every ti is.

Remark 5.10. If the Λ-matching t is a translation diagram, so is its reduction.

From now on we will assume implicitly that every Λ-matching is in fact a translation
diagram. Furthermore we will only consider the idempotent truncation by super weight
diagrams. For this we make the following definition:

Definition 5.11. Let eKt
Λ
e be the subalgebra of Kt

Λ
spanned by all oriented stretched

circle diagrams aλtµb∗, where a and b are super weight diagrams. Additionally we let
eIt

Λ
e be the intersection of eKt

Λ
e and I

t
Λ

and eK̃t
Λ
e := eKt

Λ
e/eIt

Λ
e. We observe that

the multiplication on KΛ induces a multiplication on eKΛe as well and we get an
induced (eKΛk

e, eKΛ0
e)-bimodule structure on eKt

Λ
e (and analogously for eK̃t

Λ
e). We

will abuse notation and denote the simple and indecomposable projective modules for
the algebra eKΛe (resp. eK̃Λe) by L(λ) and P (λ) (resp. L(λ) and P (λ)).
We define eKe :=

⊕

Λ eKΛe, where the sum runs over all blocks and similarly eK̃e :=
⊕

Λ eK̃Λe. Using the projections eK̃e → eK̃Λe we might think of eK̃t
Λ
e as an eK̃e-

bimodule.

Remark 5.12. The algebra eK̃e has a set of local units given by super weight diagrams.
For a super weight diagram λ we obtain P (λ) = eK̃eλ and thus in the Grothendieck
group we have

[P (λ)] =
∑

µνλ

qdeg(µνλ)[L(µ)] =
∑

µλ

(q + q−1)nµqdef(λ)[L(µ)],

where nµ denotes the number of circles in the circle diagram µλ and we sum over all

(oriented) not nuclear circle diagrams µλ (resp. µνλ) for a super weight diagram µ.
Compare this also with Theorem 5.20 and Remark 5.21. Note that there are only
finitely many µ such that µν is oriented and not nuclear, and hence P (λ) is finite
dimensional.

Using this notation we obtain the following result:

Lemma 5.13. The map m̃ from Lemma 5.7 restricts to an isomorphism

m̃e : eK̃t
Λe⊗eK̃Λ0

e eK̃
u
Γe → eK̃tu

Λ≀Γe.

Proof. This follows easily by noting that if we have an oriented stretched circle diagram
aλtµb∗ such that a is a super weight diagram, but if b is not, we necessarily have
aλtµb∗ ∈ I

t
Λ

. Assume the layer numbers of a and b agree, i.e. κ(a) = κ(b), then b would
be a super weight diagram as well, because t is a translation diagram. So we have
κ(a) 6= κ(b) and this means that aλtµb∗ has to contain a nonpropagating line. �
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In Lemma 5.3 we have seen that K̃ is generated in degrees 0 and 1. In general
idempotent truncations do not preserve this property.

Theorem 5.14. The algebra eK̃e is generated by its degree 0 and 1 part.

Remark 5.15. The basic idea of this proof is the same as [ES16b, Theorem 6.10].
However Ehrig and Stroppel use some reduction process in the finite case to only
consider circle diagrams without lines. We will not do this for two reasons. First
our weight diagrams are infinite opposed to finite, so one would first need to do some
reduction to finite weight diagrams to adapt this idea to our setting. Secondly we want
to make sure that in every step we actually use only circle diagrams which actually live
in eK̃e.

Proof. We will prove the statement via induction. For this we are going to change
weight diagrams locally. Every local change will either change the positions between a
ray and a cup or the positions of two cups relative to each other. In particular, every
local change in this proof preserves the property of being a super weight diagram, and
we will not mention this later. We first define elements Xi,λ which are based on the

circle diagram λλλ. In case that the vertex at position i is not part of a circle we set
Xi,λ := 0, and otherwise we reverse the orientation of this circle in contrast to λλλ.
The proof of this theorem is split into two parts. First we are going to show that the
elements Xi,λ for every i and λ are generated by degree 1 and 0 elements.
The second part is going to be an induction over the degree, where the first part allows
us to consider only anticlockwise oriented circles.
Suppose that we are given Xi,λ. We may assume Xi,λ 6= 0, as otherwise the claim is
trivial. Furthermore denote the circle containing the vertex i by C. We are going to
consider three different cases, depending on what happens directly to the right of C.
Either there is a line, the starting point of a cup, or the endpoint of a cup.
If there is a line to the right of C, we can look schematically (meaning that there might
be dots involved, which we omit here) at the picture

· = ±

.

Let µ be the weight such that µ agrees with λ except that the cup belonging to C and
the line to the right of it are swapped. If the cup and the line in λ contain a dot, we
choose µ such that it has no dot on either of them. If exactly one of the cup and the
line are dotted in λ we require the corresponding line in µ to be dotted. In other words,
we want to have an even number of dots on this curved line in the above picture and
the picture should be admissible.
Then the circle diagram λµ admits a unique degree 1 orientation ν (i.e. every circle is
oriented anticlockwise). Then by the definition of the surgery procedure we have

λνµ · µνλ = ±Xi,λ.

If there is a circle directly to the right of C we look schematically at Figure 6. We
choose µ such that there are two nested cups in µ instead of the two next to each other.
We may equip the outer cup in µ with a dot if exactly one of the cups in λ is dotted. If
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±

Figure 6. The case that a circle is directly to the right of C

we denote the unique orientation of degree 1 by ν, we have by definition of the surgery
procedures (see picture above)

λνµ · µνλ = ±Xi,λ ±Xi+2,λ.

Now we can repeat the argument for Xi+2,λ and see that Xi+2,λ is generated by degree
1 elements. Hence this is true for Xi,λ. Note that this recursion has to stop at some
point as λ has only finitely many cups.
Lastly the cup corresponding to C may be nested in some other cup. Then we can
proceed as indicated in Figure 7. We choose µ such that there are two cups in µ next

±

Figure 7. The case that the cup of C is nested in some other cup

to each other instead of two nested ones. We may equip the left cup in µ with a dot if
exactly one of the cups in λ is dotted. If we denote the unique orientation of degree 1
by ν, we have by definition of the surgery procedures (see picture above)

λνµ · µνλ = ±Xi,λ ±Xj,λ,

where j denotes a vertex belonging to the outer cup. Now similar as before we can
repeat the argument for Xj,λ and see that Xj,λ is generated by degree 1 elements and
hence Xi,λ as well. Note that this recursion has to stop at some point as λ has only
finitely many cups. This finishes the first part of the proof.
The second step is to show the general statement. We prove this via induction over the
degree of the circle diagram. If the degree is 0 or 1 the statement is trivial, so let λνµ
be any circle diagram of degree > 1. By the first step, we may assume that ν is the
orientation νmin of λµ of minimal degree, as any other orientation arises from λνminµ
by multiplying with some Xi,λ. Take any component C of λνµ of degree ≥ 1. This is
either a circle or a line.
If it is a line, it (or its horizontal mirror image) looks schematically like
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. . .

.

We let µ′ be the weight such that µ′ differs from λ in the way that the ray (corresponding
to the line) is swapped with the cup to the right. The cup and the ray are decorated
with dots, in the unique way such that µ′µ is orientable. We furthermore let ν ′ be

the unique orientation of λµ′ of degree 1 and ν ′′ be the unique orientation of minimal
degree of µ′µ. This then looks locally as in Figure 8. Looking at the above pictures

µ′ν ′′µ . . .

λν ′µ′ . . .

Figure 8. The reduction process for a line

and the definition of the surgery procedures one easily checks that

λν ′µ′ · µ′ν ′′µ = ±λνµ.

By Lemma 4.6 we have that the degree of µ′ν ′′µ is one less than the degree of λνµ,
hence it is generated by degree 0 and 1 elements by induction. Therefore we see that
λνµ is generated by degree 0 and 1 elements.
However, if the component C is a circle, it necessarily consists of at least two cups and
caps by Lemma 4.6, and we need to have a pair of cups or a pair of caps γ1 and γ2

nested in each other. Without loss of generality, we may assume that this is a pair of
cups. We choose γ1 such that it is not contained in any other cup and γ2 such that it is
only contained in γ1. Figure 9 gives an overview about our choices of γ1 and γ2. Then

γ1

γ2

Figure 9. The choice of γ1 and γ2 in C

we choose µ′ such that µ′ is the same as λ except that these nested cups are replaced

by two neighbored ones. Figure 10 describes the definition of µ′. Then λµ′ admits a
unique orientation of degree 1, which we call ν ′. Additionally, we define ν ′′ to be the
orientation of minimal degree of µ′µ. Then by construction and Lemma 4.6 the degree
of µ′ν ′′µ is one less than the degree of λνµ. Hence it is generated by degree 0 and 1
elements by induction. Furthermore by the definition of the surgery procedure we have

(21) λν ′µ′ · µ′ν ′′µ = ±λνµ.

Thus we see that λνµ is generated by degree 1 and 0 elements, finishing the proof. �
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µ′ν ′′µ

λν ′µ′

Figure 10. Definition of µ′.

Definition 5.16. Let t be a proper ΛΓ-matching and define G̃t
ΛΓ to be the functor

eK̃t
ΛΓe〈− caps(t)〉 ⊗eK̃Γe _. We call (possibly shifted) direct sums of these functors

projective functors as well.

With these definitions the analog of [BS10, Theorem 4.2] holds for G̃t
ΛΓP (γ) by replacing

Kt
ΛΓ)eγ〈− caps(t)〉 with (eK̃t

ΛΓe)eγ〈− caps(t)〉.

Lemma 5.17. The map φ from (18) induces a homogeneous (eK̃Γe, eK̃Γe)-bimodule
map φ̃ : eK̃t∗

ΓΛe⊗ eK̃t
ΛΓe → eK̃Γe of degree −2 caps(t), which is also eK̃Λe-balanced.

Proof. Let x := aγt∗µd⊗d∗µ′tγ′b ∈ eIt∗

ΓΛe⊗ eKt
ΛΓe. We want to show that φ(x) ∈ eIΓe.

First of all observe that each basis vector of eIt
ΓΛe contains at least one upper and

one lower line by definition and assumptions on the matching t. Now note that the
process of upper reduction preserves lower lines, and thus if aγt∗µd ∈ eIt

ΓΛe and if c
denotes the upper reduction of t∗d, then aγc contains a nonpropagating line ending
at the bottom. But this line is preserved under surgeries for (aγc)(c∗γ′b) and hence
φ(x) = ±(aγc)(c∗γ′b) ∈ eIΓe. Using this and the dual argument for eKt∗

ΓΛe ⊗ eIt
ΛΓe,

we see that φ indeed factors as claimed in the statement of the lemma. The remaining
properties follow from Lemma 4.15. �

From this we can deduce analogous results to [BS10, Theorem 4.7], [BS10, Corollary
4.8] and [BS10, Corollary 4.9] with the same proofs by replacing [BS10, Theorem 4.2]
with the analogous statement for eK̃Λe, resulting in the following corollary.

Corollary 5.18. We have an adjoint pair of functors

(G̃t∗

ΓΛ〈cups(t) − caps(t)〉, G̃t
ΛΓ)

giving rise to a degree 0 adjunction between modlf (eK̃Γe) and modlf (eK̃Λe).

From Lemma 5.17 we get with the same proof as in [BS10, Theorem 4.10] (using that
I
t
ΛΓ and IΛ are preserved under ⊛) the following theorem.

Theorem 5.19. Given any proper ΛΓ-matching t and any graded K̃Γ-module M , there
exists a natural isomorphism G̃t

ΛΓ(M⊛) ∼= (G̃t
ΛΓM)⊛ of graded K̃Λ-modules.

Now we have all the ingredients to state the equivalent of [BS10, Theorem 4.11] in the
setting of nuclear diagrams.

Theorem 5.20. Suppose we are given a proper ΛΓ-matching t and γ ∈ Γ. Then
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(i) in the graded Grothendieck group of modlf (eK̃Λe)

[G̃t
ΛΓL(γ)] =

∑

µ

(q + q−1)nµ [L(µ)],

where nµ denotes the number of lower circles in µt and we sum over all µ ∈ Λ
such that
(a) γ is the lower reduction of µt,
(b) there exists no lower line in µt,

(ii) the module G̃t
ΛΓL(γ) is nonzero if and only if all cups of tγ are anticlockwise

oriented and
(iii) under the assumptions of (ii) define λ ∈ Λ such that λ is the upper reduction of

tγ or alternatively λtγ is oriented and every cup and cap is oriented anticlockwise.
In this case G̃t

ΛΓL(γ) is a self-dual indecomposable module with irreducible head

L(λ)〈− caps(t)〉.

Proof. Part (i) can be proven as [BS10, Corollary 4.11].
For (ii) and (iii) observe that a Jordan–Hölder series for G̃t

ΛΓL(γ) as eK̃Λe-module
is the same as one Jordan–Hölder series as eKΛe-module. Thus we can look at a
Jordan–Hölder series as eKΛe-modules. Now note that (eIΓe)L(γ) = 0 and thus
G̃t

ΛΓL(γ) = (Gt
ΛΓL(γ))/((eIΛe)G

t
ΛΓL(γ)). Hence G̃t

ΛΓL(γ) is a quotient of Gt
ΛΓL(γ) as

eKΛe-modules and thus it can be only nonzero if each cup of tγ is oriented anticlockwise
by the type B analog of [BS10, Theorem 4.11]. But in this case Gt

ΛΓL(γ) has irreducible
head L(λ)〈− caps(t)〉, where λ is such that λtγ oriented and all every cup and cap
is oriented anticlockwise. So G̃t

ΛΓL(γ) is zero or it has the same irreducible head.
But this composition factor can only occur by (i) if λ satisfies (a) and (b). These
two conditions are automatically satisfied as any nonpropagating line needs to have a
clockwise oriented cup or cap in t. That G̃t

ΛΓL(γ) is self-dual follows from Theorem 5.19

and the fact that L(γ)⊛ ∼= L(γ). �

Remark 5.21. Note that the formulas in Remark 5.12 and Theorem 5.20 share many
similarities. Let γ ∈ Γ and µ ∈ Λ denote any super weight diagrams. Define t to be
µγ, i.e. we draw the cap diagram of µ under the cup diagram of γ and connect the

rays from left to right. A basis for eK̃t
ΛΓe is given by aνtηb. As we apply G̃t

ΛΓ to the

irreducible module L(γ), it follows from the definition of L(γ) that a basis for G̃t
ΛΓL(γ)

is given by aνtγγ. By definition of t this can then be easily identified with the basis
aνµ for P (µ). Thus we have G̃t

ΛΓL(γ) ∼= P (µ)〈− def(µ)〉. Note the degree shift in
Definition 5.16 and that caps(t) = def(µ). In this case, we also see that the assumption
(a) in Theorem 5.20 is automatically satisfied.

Remark 5.22. Corollary 5.18 tells us, in particular, that G̃t
ΛΓ is exact and then we can

use the same argument as in [BS10, Corollary 4.12], replacing [BS10, Theorem 4.11] by
Theorem 5.20(i) to show that G̃t

ΛΓ preserves finite dimensional modules.

6. Graded Brauer algebras

In this section we are going to prove the main theorem stated in the introduction. We
will relate the category F and i-translation with a Khovanov algebra of type B and
the corresponding projective functors. Throughout this chapter eKe will denote the
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idempotent truncation of K by the super weight diagrams and eK̃e the quotient of
eKe by the nuclear ideal, similar to Section 5. We fix r, n ∈ Z≥0, set m := ⌊ r

2⌋ and
furthermore δ = r − 2n.

(i)

Θ− 1

2

Θ−i Θ− 1

2

Θ−i Θ− 1

2

Θi Θ− 1

2

Θi

(ii)

Θ− 1

2

Θ−i Θ− 1

2

Θ−i Θ− 1

2

Θi Θ− 1

2

Θi

(iii)

Θ− 1

2

Θ− 1

2

Θ− 1

2

Θ− 1
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Θ− 1
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Θ 1
2

Θ− 1

2

Θ 1
2

(iv)

Θ− 1

2

Θ− 1

2

Θ− 1
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Θ− 1
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Θ− 1
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Θ 1
2

Θ− 1

2

Θ 1
2

(v)

Θ− 1

2

Θ0

Figure 11. Local moves

Definition 6.1. Let i ∈ Z+ δ+1
2 . Given a block Γ of Deligne weight diagrams, suppose

that the number line of Γ agrees at the vertices |i| ± 1
2 with the bottom line of one of

the pictures C in Figure 11. By adding vertical strands C can be extended to a unique
ΓtC

i
Γ-matching tCi , where ΓtC

i
is the block which is obtained from Γ, when replacing

the symbols at positions |i| ± 1
2 with the top of the picture C.

We then define the functor ΘΓ
i :=

⊕

C G
tC
i

Γ
tC
i

Γ : modlf (KΓ) → modlf (K), where the

direct sum runs through all possible pictures, which can be put at positions |i|± 1
2 onto

Γ. We remark here, that whenever i 6= −1
2 there is always at most one choice and if

i = −1
2 and the block sequence of Γ starts with ⋄◦ we have two choices.

Given this we define Θi : modlf (K) → modlf (K) as
⊕

Γ ΘΓ
i .

In the same way we define Θ̃Γ
i :=

⊕

C G̃
tC
i

Γ
tC
i

Γ : eK̃Γe-mod → eK̃e-mod and Θ̃i :=
⊕

Γ Θ̃Γ
i : eK̃e-mod → eK̃e-mod.

Definition 6.2. Define Td :=
⊕

i∈(Z+ δ+1

2
)d ΘiL(∅δ), where Θi := Θid

. . .Θi1
if i =

(i1, . . . id).

Theorem 6.3. There exist isomorphisms of algebras ξd : Brd(δ)
∼=→ EndK(Td) such

that the following diagram commutes

Brd(δ) EndK(Td)

Brd+1(δ) EndK(Td+1)

ξd

i -ind Θi

ξd+1
.

Proof. In order to prove this theorem we replace the Brauer algebra with two graded
lifts. The problem is that the idempotents picking out the eigenspaces for the i-
induction are not part of the definition of the Brauer algebra and very hard to handle.
So one would like to find a variant of the Brauer algebra that has these idempotents
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build in the definition. This is the algebra Gd(δ) provided by [Li14]. This algebra
Gd(δ) is the Brauer analogue of the cyclotomic Khovanov–Lauda–Rouquier algebra Rd

in [BK09] and plays the same role as Rd for the degenerate affine Hecke algebra.
Via the same definition of i-induction forGd(δ) one can easily verify that the isomorphism
between Brd(δ) and Gd(δ) in [Li14] is compatible with i-induction.
On the other hand we have the so called cup-cap algebra Cd(δ). It consists out of so
called oriented stretched circle diagrams of height d and a multiplication, which is also
given by some surgery procedure, for details see [ES21, Section 11] and [Mkr20, Section
4]. This can then easily be identified with EndK(Td) using the diagrammatic description
of Θi. For the cup-cap algebra one can also define a version of Θi which is given by
inserting the local moves in the middle of an oriented stretched circle diagram.
The most difficult and important part is the identification of Gd(δ) with Cd(δ). An
explicit isomorphism can be found in [Mkr20]. By construction this isomorphism swaps
i-induction and Θi. �

Now we have all the ingredients to prove the main theorem from the introduction.

Theorem 6.4. We have an equivalence of categories Ψ: (eK̃e)-mod → F such that θi ◦
Ψ ∼= Ψ◦Θ̃i, which maps L(λ?

ε ) to L(λ, ε) for every (λ, ε) ∈ sΓδ(m,n) ∼= X+(OSp(r|2n)).

Proof. By Theorem 6.3, we have algebra isomorphisms ψd : EndK(Td) → Brd(δ) for
every d ≥ 0 such that ψd+1 ◦ Θi = i -ind ◦ψd.
We can take the direct limit of Endk(Td) with respect to the inclusion

⊕

i∈Z+ δ+1

2

Θi : Endk(Td) → Endk(Td+1)

and we can take the direct limit of Brd(δ) with respect to the natural inclusion Brd(δ) →
Brd+1(δ), f 7→ f ⊗ 1. Note that this natural inclusion is the same as

⊕

i∈Z+ δ+1

2

i -ind

and thus we obtain an isomorphism

(22) ψ : lim−→ Endk(Td) → lim−→ Brd(δ)

with ψ ◦ Θi = i -ind ◦ψ.
By (7) we have a surjective algebra homomorphism Brd(δ) → EndF (V ⊗d). Taking
the direct limit of EndF (V ⊗d) with respect to the embedding f 7→ f ⊗ 1, we obtain a
surjective algebra homomorphism

(23) Φ: lim
−→

Brd(δ) → lim
−→

EndF (V ⊗d)

such that Φ ◦ i -ind = θi ◦ Φ (the compatibility follows from Theorem 2.23).
Putting this together we obtain a surjective algebra homomorphism

(24) Ψ′ := Φ ◦ ψ : lim
−→

Endk(Td) → lim
−→

EndF (V ⊗d)

such that θi ◦ Ψ′ = Ψ′ ◦ Θi.
Now we take a look at the algebra A(r|2n) which we define as

A(r|2n) :=
⊕

(λ,ε),(µ,ε′)∈X+(OSp(r|2n))

HomF (P (λ, ε), P (µ, ε′)).

Let f ∈ A(r|2n). By definition this can be identified with some f ∈ EndF (P,P ) for
some projective module P which is the direct sum of finitely many nonisomorphic
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indecomposable projective objects in F . We may assume that they lie in the same
block. Then by [ES21, Proposition 5.10] there exists V ⊗d containing P as a summand,
and thus we can consider f as an endomorphism of V ⊗d. In this way we can realize
A(r|2n) as a subalgebra of lim

−→
EndF (V ⊗d).

By Theorem 3.15 and Theorem 3.20 Ψ′ restricts to a surjective algebra homomorphism
Ψ̄: eKe → A(r|2n) which identifies the idempotent corresponding to P (λ, ε) ∈ F with

the idempotent corresponding to the super weight diagram associated to (λ, ε)1. We
have a commutative diagram

lim
−→

EndK(Td) lim
−→

EndF (V ⊗d)

eKe A(r|2n),

Ψ′

ι1

Ψ̄

ι2

when we identify eKe =
⊕

λ,µ HomK(P (λ), P (µ)), where we sum over pairs of super
weight diagrams with a subalgebra of lim

−→
EndK(Td). We clearly have θi◦ι2 = ι2◦θi, but

unfortunately we do not have Θi ◦ ι1 = ι1 ◦ eΘie. The problem is that in K (and thus
in lim−→ EndK(Td)) we are allowed to have circle diagrams λνµ such that κ(λ) 6= κ(µ),
but in eKe this is not possible by Definition 5.11 as it is the idempotent truncation by
super weight diagrams and by Definition 3.21 every super weight diagram µ satisfies
κ(µ) = min(m,n). By [ES21, Proposition 8.8], we know that Θi never decreases
the layer number, but it might increase it. However, in this case Ψ′ produces 0 by
Theorem 3.15. Thus we have θi ◦ Ψ̄ = Ψ̄ ◦ eΘie.
By [ES21, Lemma 10.4] and Theorem 3.15 Ψ̄ factors through the nuclear ideal eIe
giving rise to Ψ: eK̃e → A(r|2n). By additionally looking at [ES21, Proposition 8.8]

and the definition of Θ̃i we also see that θi ◦ Ψ = Ψ ◦ Θ̃i. By [ES17, Theorem 5.1]
Ψ is an isomorphism, so we get an equivalence of categories Ψ: eK̃e-mod → F such
that θi ◦ Ψ ∼= Ψ ◦ Θ̃i. This equivalence maps L(λ?

ε ) to L(λ, ε) as the isomorphism
φ : eK̃e → A(r|2n) identifies the idempotent corresponding to P (λ, ε) in A(r|2n) with

e
λ?

ε
in eK̃e. �

Remark 6.5. If we summarize our results so far in terms of understanding direct
summands of V ⊗d, we know by Definition 2.22 that it suffices to understand θi1

◦ · · · ◦
θid
L(∅,+). By Theorem 6.4 this is the same as Ψ ◦ Θ̃i1

◦ · · · ◦ Θ̃id
L((∅δ)?

+). Forgetting

the grading on eK̃e we know that (by Definition 6.1) Θ̃i is given by tensoring with some
⊕

j eK̃
tj

ΛjΓj
e for certain blocks Λj and Γj and ΛjΓj-matchings tj . Note that by definition

each of these tj is a translation diagram. Lemma 5.7 then tells us that Θ̃i1
◦ · · · ◦ Θ̃id

is actually given by
⊕

j eK̃
tj

Λj
e for some sequences of blocks Λj and Λj-matchings

tj. Finally using Theorem 5.8 we see that the sum
⊕

j eK̃
tj

Λj
e can be reduced to

1Actually it identifies the idempotent corresponding to the super weight diagram with the reversed
sign rule (see Remark 3.23) associated to (λ, ε). But changing the parity of the dot on the leftmost ray
in eK̃e is an automorphism, so we just twist in the end by this automorphism and obtain the desired
result. On the super side, this would correspond to tensoring with L(∅, −).
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⊕

j′ eK̃
tj′

Λj′ Γj′
e. Furthermore by Theorem 5.20(iii) we know that eK̃

tj′

Λj′ Γj′
e⊗eK̃eL((∅δ)?

+)

is indecomposable.
As the equivalence Ψ from Theorem 6.4 is necessarily additive, every indecomposable
summand of V ⊗d is then of the form Ψ(eK̃t

ΛΓe ⊗eK̃e L((∅δ)?

+)) for some blocks Λ, Γ
and a ΛΓ-matching t. This is the same (forgetting the grading) as writing that every
indecomposable summand is of the form Ψ(G̃t

ΛΓL((∅δ)?

+)).
Conversely every such choice of Λ, Γ and t gives in this way an indecomposable
summand in some V ⊗d.

7. Indecomposable tensors

Recall that the indecomposable modules in V ⊗d are parametrized by partitions which
give rise to Deligne weight diagrams. The indecomposable summands are then given
by {FRδ(λ) | κ(λδ) ≤ min(m,n)} by Theorem 3.15.
By Remark 6.5 we know that each FRδ(λ) arises as Ψ(G̃t

ΛΓL((∅δ)?

+)) for some blocks

Λ and Γ in eK̃e and some ΛΓ-matching t. It also follows from [ES21, Theorem 12.1]
that FRδ(λ) is self-dual.

Proposition 7.1. The radical and socle filtration of G̃t
ΛΓL((∅δ)?

+) agrees with the
grading filtration. In particular the radical and socle filtration of FRδ(λ) is induced
by the grading filtration on G̃t

ΛΓL((∅δ)?

+), it is rigid and has Loewy length ll(FRδ(λ)) =
2d(λδ) + 1, where d(λδ) denotes the number of caps in the cap diagram of λδ.

Proof. Let us abbreviate X := G̃t
ΛΓL((∅δ)?

+). This admits a filtration by submodules

X(j) which is spanned by all graded pieces of degree ≥ j as eK̃e is a nonnegatively
graded algebra. So for some m < n we have

X = X(m) ⊃ X(m + 1) ⊃ · · · ⊃ X(n)

and X(n + 1) = 0. Using Theorem 5.14 and the fact that the degree 0 part of the
Khovanov algebra is semisimple (it is a direct sum of irreducible modules) we can apply
[BGS96, Prop. 2.4.1] in conjunction with Theorem 5.20(iii) to get that the socle and
radical filtration agree with the grading filtration up to a shift and that m respectively
n has to be − caps(t) respectively caps(t). The Loewy length ll(X) is thus given by
2 caps(t)+1. This then translates to FRδ(λ) by using Ψ from Theorem 6.4. It remains
to see that caps(t) = d(λδ). But [ES21, Theorem 8.7] tells us that λδ is the upper

reduction of t∅δ. Thus as ∅δ is cap-free (as follows easily from the definitions) we have
that caps(t) = d(λδ) as no cap in t gets removed during the process of upper reduction
(see Definition 4.9). �

Proposition 7.2. Each block has a unique irreducible FRδ(λ).

Proof. By Proposition 7.1, we have that FRδ(λ) is irreducible if and only if d(λδ) = 0,
i.e. the cup diagram λδ contains no cup. Now recall that by Definition 3.3 any block
is uniquely determined by the positions of ◦ and × as well as the parity of the number
of ∧’s. Note that for each of these choices we can create exactly one Deligne weight
diagram λδ such that its cup diagram does not contain a cup.
This follows because the positions of ◦ and × are fixed and by observing that whenever
we have at least two ∧’s, we necessarily create a cup. Therefore, we have at most one
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∧. In the case of one ∧, note further that no ∨ can appear to the left of it without
creating a cup, thus ∧ has to appear on the leftmost free position. Hence we only have
one choice. It is additionally easy to see that this choice of a weight diagram gives rise
to an irreducible FRδ(λ). �

7.1. Kazhdan–Lusztig polynomials of type B and Deligne–Kostant weights.

In [BS10, Section 5] Brundan and Stroppel defined certain polynomials pλ,µ(q) associated
to weight diagrams λ, µ in type A via labellings of diagrams. These also agree (up to a
scaling factor) with the polynomialsQv

w(q) defined in [LS81, Section 6], which are shown
in [LS81, Théorème 7.8] to be equal to the (geometric) Kazhdan–Lusztig polynomials
associated to Grassmannians in the sense of [KL79]. In [Sey17] the diagrammatic
definition was extended for weight diagrams of type D, which is very similar to our
situation. The only difference is that the weight diagrams of type D are finite, whereas
ours are infinite.
In [BS10, Section 5] Brundan and Stroppel related the polynomials pλ,µ(q) to the
dimension of some extension group and gave a diagrammatical condition when these
polynomials are monomials (for a fixed µ). The same results were obtained in [Sey17,
Section 5] for type D and we will prove these statements also for type B. The
main advantage of the diagrammatical description of the Kazhdan–Lusztig polynomials
pλ,µ(q) in [BS10] is that the definition also makes sense for unbounded weights and this
gives us the possibility to directly adapt the proofs of [Sey17, Section 5].
Throughout this section we fix δ ∈ Z and consider two Deligne weight diagrams λ ≤ µ.

Definition 7.3. A cap γ in µ is called D-nested inside a cap γ′ if either γ lies under
γ′, or γ′ is dotted and γ lies to the left of γ′.
Suppose we are given two Deligne weight diagrams λδ ≤ µδ such that l0(λ, µ) = 2k. A
λ-labelling C of the oriented cap diagram µµ assigns to every cap a natural number,
such that the following properties are satisfied:

(i) If the left end of an undotted cap is at position i, its label is at most li(λ, µ).
(ii) The label of any dotted cap is even and at most l0(λ, µ).
(iii) If a cap γ is D-nested inside another cap γ′, the label of γ is greater or equal

to the label of γ′.
(iv) A cap may only have an odd label if there is some other cap above it or to the

left of it, which has a strictly smaller label, or if there is a ray to the left of it.

We denote the set of λ-labellings of µµ by D(λ, µ). The value |C| of a labelling C ∈
D(λ, µ) is defined to be the sum of the labels in C.

Definition 7.4. For two Deligne weight diagram λ ≤ µ we define the dual Kazhdan–
Lusztig polynomial pλ,µ(q) to be

pλ,µ(q) = ql(λ,µ)
∑

C∈D(λ,µ)

q−2|C|.

The following theorem is proven in [HNS].

Theorem 7.5. For every standard module V (λ) there exists a linear projective resolution

· · · → P k → P k−1 → · · · → P 1 → P 0 → V (λ)

such that P k ∼=
⊕

µ p
(k)
λ,µP (µ)〈k〉, where p

(k)
λ,µ denotes the coefficient of qk in pλ,µ(q).
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Definition 7.6. A Deligne weight diagram µ is called a Deligne–Kostant weight if
∑

k≥0

dim Extk
K(V (λ), L(µ)) ≤ 1

for all λ in the same block as µ.

This definition agrees with the definition of Kostant weights for the Khovanov algebra
of type A given by Brundan and Stroppel in [BS10, Section 7] (which is motivated
from [BH09]). We speak of Deligne–Kostant weights to distinguish them from Kostant
weights in the sense of [GH23], which we will use in Section 8.

Proposition 7.7. A weight diagram µ is a Deligne–Kostant weight if and only if
pλ,µ(q) = ql(λ,µ) for all λ ≤ µ.

Proof. This is a direct application of Theorem 7.5. Note that first of all
∑

k≥0

dim Extk
K(V (λ), L(µ)) = pλ,µ(1) ∈ Z ∪ {∞}

if λ ≤ µ and 0 otherwise. So we only have to consider the case λ ≤ µ. There we
observe that the term ql(λ,µ) always occurs (just take the 0-labelling). Thus µ is a

Deligne–Kostant weight if and only if pλ,µ(q) = ql(λ,µ) for all λ ≤ µ. �

We can also directly characterize Deligne–Kostant weights in terms of the weight
diagram.

Definition 7.8. Let χ be a finite sequence of ∧’s and ∨’s. A weight diagram λ is called
χ-avoiding if χ does not occur as a subsequence of λ.

Proposition 7.9. For a Deligne weight diagram µ the following are equivalent:

(i) µ is a Deligne–Kostant weight.
(ii) µ is ∨∧-avoiding, ∧∧-avoiding and ⋄∧-avoiding.
(iii) µ contains no caps.
(iv) µδ is maximal in the Bruhat order from Definition 3.4.

Proof. That (ii) is equivalent to (iii) follows directly from Definition 3.7. The equivalence
of (ii) and (iv) is a direct consequence of Definition 3.4. If there are no caps in µ, we
only have the 0-labelling, so (iii) directly implies (i).
Lastly it suffices to construct a nontrivial labelling for some λ ≤ µ in case of a
subsequence ∨∧ or ∧∧. For this we may assume that µ does not contain any ◦ or
×.
If µ contains ∨∧, we choose i < i + 1 < j < k labelled ∨ ∧ ∨∨ (this is always possible
as µ is admissible) and define λ to be obtained from µ by replacing the ∨’s at positions
j and k by ∧’s. Then we have li(λ, µ) = 2 and µ has a small cap at positions i, i + 1.
Labelling this cap 2 and all other ones by 0 gives a nontrivial λ-labelling of µµ.
If µ however contains ∧∧ and no ∨∧, the first two symbols are necessarily ∧∧. Let λ
be the weight obtained from µ by replacing two ∨’s from µ by ∧’s. Then λ ≤ µ and
l0(λ, µ) = 2. Labelling the small dotted cup of µ coming from ∧∧ by 2 and all other
ones by 0 we obtain a nontrivial λ-labelling of µµ. �
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8. Characterizations of direct summands L(λ) in V ⊗d

The aim of this section is to give a characterization of those weights λ such that L(λ)
appears as a direct summand of some V ⊗d for OSp(r|2n). So we are interested in the
cases such that FRδ(µ) ∼= L(λ, ε) for some partition µ and some (λ, ε) ∈ sΓδ(m,n).
Similar results were obtained by [Hei17] for GL(m|n).
This gives us two different viewpoints to characterize these summands. For example
we could classify those Deligne weight diagrams µ such that FRδ(µ) is irreducible, or
we could classify those pairs (λ, ε) such that L(λ, ε) appears as a direct summand in
some V ⊗d. For the first point of view we get the following characterization

Corollary 8.1. For a Deligne weight diagram µδ the following are equivalent.

• FRδ(µ) is irreducible.
• µδ contains no caps.
• µδ is ∨∧, ∧∧ and ⋄∧-avoiding.
• µδ is maximal in the Bruhat order from Definition 3.4.
• µδ is a Deligne–Kostant weight.
• pλδ,µδ

(q) is a monomial for all Deligne weight diagrams λδ ≤ µδ.

Proof. The equivalence of the first two properties is Proposition 7.1. The middle four
are equivalent by Proposition 7.9 and the last two by Proposition 7.7. �

The main idea for the classification of the (λ, ε) is to compute µ†
δ of a Deligne weight

diagram µδ with irreducible FRδ(µδ). This will give the highest weights of the irreducible
indecomposable summands. For this we first introduce the sign of a weight diagram.

Definition 8.2. Suppose that δ is odd. For a weight diagram λ of hook partition type
we define sgn(λ) as follows: For each ◦ and × appearing in λ we count the number of

symbols ∨ and ∧ to the left of it and denote their sumX. We set sgn(λ) := (−1)X+#∨(λ).
If δ is even, we set sgn(λ) := + for a weight diagram λ of hook partition type.

This definition allows us to characterize explicitly the irreducible direct summands in
terms of weight diagrams.

Theorem 8.3. For (λ, ε) ∈ X+(OSp(r|2n)), the corresponding irreducible module
L(λ, ε) is a direct summand in some V ⊗d if and only if λ is typical, or it is ?∨ avoiding
for ? ∈ {⋄,∨,∧} and ε = sgn(λ∞).

Proof. Note that every such L(λ, ε) is necessarily isomorphic to some FR(µδ) and thus

(λ, ε) = µ†
δ by Theorem 3.20. Now observe that FR(µδ) is irreducible if and only if

there are no caps in µδ by Proposition 7.1. It is easy to check using the definition
of the associated cap diagram that µδ contains no caps if and only if µδ is ∧∧-, ∨∧-
and ⋄∧-avoiding (see also Corollary 8.1). When removing all ◦’s and ×’s µδ has to

look like ∨ ∨ ∨ . . . , ∧ ∨ ∨ . . . or ⋄ ∨ ∨ . . . . Then one only needs to determine µ†
δ. We

remark here that the case distinction comes from the distinction between projective
and nonprojective weight diagrams (i.e. the typical and atypical case). For the sign in
the odd case, note that sgn(λ∞) is the same as (−1)|µ|. �

Translating the definition of [GH23, Definition 3.5.3] to the combinatorics of Ehrig and
Stroppel which we are using here, we obtain the following definition of Kostant weight.



44 THORSTEN HEIDERSDORF AND JONAS NEHME AND CATHARINA STROPPEL

Definition 8.4. We call λ ∈ X+(osp(r|2n)) a Kostant weight if the associated weight
diagram λ∞ is ∨-avoiding.

Remark 8.5. Note that every pair (λ, ε) for a typical highest weight λ (which means
min(#◦(λ∞),#×(λ∞)) = min(n,m)) is automatically ∨ avoiding by Remark 3.18. On
the other hand if we have min(#◦(λ∞),#×(λ∞)) < min(n,m) (the atypical case),
L(λ, ε) (for ε = sgn(λ∞)) appears as a direct summand if and only if it is ∨-avoiding
except for maybe the first position.

In the following paragraph we are going to define a twist, which turns the first symbol
different from ◦ or × upside down. We will use this to relate Kostant weights in
the sense of [GH23] with the weights λ such that L(λ, sgn(λ∞)) appears as a direct
summand in V ⊗d.
Given a super weight diagram λ we can look at the leftmost position where a ⋄, ∨ or
∧ occurs. We denote the weight diagram which is obtained by turning this symbol
upside down by λ✷. Comparing λ and λ✷, this means that they agree if ⋄ is present
and that we change the parity of dots on the leftmost component otherwise. Thus if
λγµ is an oriented circle diagram, so is λ✷γ✷µ✷, and this amounts to an isomorphism
✷ : eK̃e → eK̃e. Hence by Theorem 6.4 we get a self-equivalence ✷ : F → F . We
define for (λ, ε) ∈ X+(OSp(r|2n)) the hook weight diagram (λ, ε)✷ = (λ✷, ε✷) by first
taking the associated super weight diagram λ?

ε , applying ✷ and going back to hook
weight diagrams.
The map ✷ can also be defined on the supergroup side. Every block of OSp(r|2n)
is equivalent to the principal block of OSp(2k + 1|2k) or OSp(2k|2k). This can be
achieved via transporting this block through Ψ from Theorem 6.4 to eK̃e-mod. There
we can remove all ◦’s and ×’s as they play no role in the module structure and transport
back (this is very similar to [GS10, Theorem 2] which relates blocks of osp(r|2n) to
principal blocks in osp(2k + 1|2k), osp(2k|2k) or osp(2k + 2|2k)).
For the principal block of OSp(2k + 1|2k) the map ✷ is then just given by θ0 = prχ0

(_⊗
V ) and for the one of OSp(2k|2k) this is just the identity (all blocks containing a ⋄ are
equivalent to this one and turning ⋄ upside down changes nothing).
In general ✷ is defined by identifying a block with the corresponding principal block
under the identification above, applying the explicit description of ✷ there and transferring
back to the original block.

Proposition 8.6 ([GH23, Remark 3.5.4]). For λ ∈ X+(osp(2m + 1|2n)) we have that
L(λ) satisfies the Kac–Wakimoto character formula if and only if λ is a Kostant weight.
For λ ∈ X+(osp(2m|2n)) of atypicality greater than one we have that L(λ) satisfies the
Kac–Wakimoto character formula if and only if λ is a Kostant weight.

Putting everything together we obtain the following corollary:

Corollary 8.7. For λ ∈ X+(osp(r|2n)) the following are equivalent:

• L(λ, ε) is a direct summand of some V ⊗d, where ε = sgn(λ∞) if λ is atypical
and ε ∈ {±} otherwise.

• λ or λ✷ is a Kostant weight.

And if r is odd or at(λ) > 1 this is equivalent to

• L(λ, ε) or L(λ✷, ε✷) satisfies the Kac–Wakimoto condition.
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Remark 8.8. In [GH23, Remark 3.5.4], Gorelik and Heidersdorf stated that a weight
λ for odd r or λ of atpyicality > 1 satisfies the Kac–Wakimoto conditions if and only
if it is a Kostant weight in their sense. Here a weight λ satisfies the Kac–Wakimoto
condition if it is the highest weight of some irreducible module L with respect to a base
Σ ⊇ S of simple roots, such that S consists out of exactly at(λ) mutually orthogonal
isotropic roots and (S, S) = (S, λ+ ρ) = 0.
In [CK17, Theorem 5.2], Cheng and Kwon proved that the Kac–Wakimoto conditions
imply the Kac–Wakimoto character formula, i.e.

(25) ReρchL(λ) = j−1
∑

w∈W

sgn(w)w
( eλ+ρ

∏

β∈S(1 + e−β)

)

where R denotes the Weyl denominator

∏

α∈Φ
+
0

(eα/2−e−α/2)
∏

β∈Φ
+
1

(eβ/2−e−β/2)
, W denotes the Weyl group

of osp(r|2n) (which is the Weyl group of so(r) ⊕ sp(2n)), and j is some scalar. For
details see [CK17] or [GH23].
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Appendix A. Small rank examples

We discuss V ⊗d and translation functors for OSp(1|2), OSp(3|2) and OSp(2|2). In these
three cases every indecomposable summand is either projective or irreducible, and so
the situation simplifies a lot. We hope that these small examples serve to give the
reader an idea how everything fits together.

A.1. The semisimple case: OSp(1|2). The category of finite dimensional representations
of OSp(1|2) is semisimple, and one can use the correspondence between osp(1|2) and
so(3) from [RS82] to decompose tensor powers. We treat this example as a toy
application for our general theory.
By Lemma 2.2 and Proposition 2.8 we know that the finite dimensional representations
of OSp(1|2) are labelled by (n, ε) with n ∈ N0 and ε ∈ {±}.

A.1.1. Translating to Khovanov’s arc algebra of type D. Translating (n, ε) into a super
weight diagram (using Definition 3.21), we obtain a weight diagram consisting of a ×
at position n + 1

2 and a ∨ at every other position except for maybe the first free one.
There we put in case n is even a ∧ if ε = + and a ∨ if ε = −. If n is odd, we just
reverse the previous assignment, for example:
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(0,+) . . .

(0,−) . . .

(1,+) . . .

(4,−) . . .

As OSp(1|2) is semisimple (or equivalently as min(m,n) = 0) there are no cups and
caps involved. If we consider the associated cup respectively cap diagrams to these
weights, we obtain diagrams consisting of one free vertex and apart from that only
lines where the leftmost one might be dotted. From this it is fairly easy to see that
the only circle diagrams we can build are the eλ, where λ is one of the super weight
diagrams from the previous paragraph, and furthermore we cannot have any nuclear
diagrams as we have no cups or caps. Then by Theorem 6.4 we know that the category
of finite dimensional OSp(1|2)-modules is equivalent to eK̃e-mod.
In order to later analyze the effect of _ ⊗ V we first take a look at the geometric
bimodules Kt

ΛΓ. Now observe that Gt
ΛΓP (γ) will be 0 whenever t contains a cup or a

cap. Thus the only relevant t’s look locally like

θ−i: θi: θ0:

where the i means that it involves the positions i + 1
2 and i− 1

2 . The last picture can

only be present on the vertex 1
2 . Apart from these involved vertices t consists only of

straight lines. The geometric bimodules Kt
ΛΓ are thus also one-dimensional and by ??

using L(µ) = P (µ) we have that Gt
ΛΓL(γ) = L(λ) where λ is the upper reduction of tγ.

In this case the upper reduction for the first two picture is obtained by swapping the
× one position to the left respectively right, and in the first picture we change a ∨ at
position 1

2 into a ∧ and vice versa.
Observe that for each L(γ) we have three projective functors producing something
nonzero if the × is not at position 1

2 and only θ1 if it is at position 1
2 .

A.1.2. Decomposition of V ⊗d into irreducible summands. Translating the results of the
previous paragraph, we obtain for our translation functors θi

(26) θiL(n, ε) =























L(n+ 1,−ε) if i = n+ 1,

L(n,−ε) if i = 0 and n > 0,

L(n− 1,−ε) if i = −n and n > 0,

0 otherwise.

With this at hand and using _ ⊗ V =
⊕

i∈Z θi, we can directly write down the first

decompositions of V ⊗d into irreducibles.

V ⊗0 = L(0,+)
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V ⊗1 = L(1,−)

V ⊗2 = L(2,+) ⊕ L(1,+) ⊕ L(0,+)

V ⊗3 = L(3,−) ⊕ L(2,−)⊕2 ⊕ L(1,−)⊕3 ⊕ L(0,−)⊕1

Now note that in V ⊗d the signs of all irreducible summands are the same depending
on the parity of d. Moreover, the multiplicity of L(n, ε) in V ⊗d is either 0 (if d even
and ε = − or d odd and ε = +) or it agrees with the multiplicity of L(n) in V ⊗d as
SOSp(1|2)-modules. Define m(n, d) to be multiplicity of L(n) in V ⊗d, or equivalently
the multiplicity of L(n, ε) for the correct choice (see above) of ε. Using (26) we quickly
get the following recurrence relations for m(n, d):

m(0, 0) = 1,

m(0, d) = m(1, d− 1),

m(n, d) = m(n+ 1, d− 1) +m(n, d− 1) +m(n− 1, d − 1) if n > 0.

Using some tricks and combinatorics, one gets then for m(n, d) the explicit formulas

m(n, d) =
d

∑

i=n

(−1)i+n
(

d
i

)

(

i
⌊ i−n

2
⌋

)

=

d−n
2

∑

j=0

d!

j! (n + j)! (d − n− 2j)!
−

d−n−1

2
∑

j=0

d!

j! (n + 1 + j)! (d − n− 2j − 1)!

= T (n, d) − T (n+ 1, d)

where T (n, d) denotes the coefficient of xn+d in the expansion of (1 + x + x2)d. The
number T (n, d) denotes also the number of possible outcomes of elections with d votes
of three parties A, B and C su ch that B obtains n votes more than A.

A.2. The smallest nonsemisimple odd case: OSp(3|2).

A.2.1. The irreducible representations of osp(3|2) and OSp(3|2). We choose the simple
roots ε1 − δ1, δ1 and ρ = (−1

2 | 1
2). Let λ ∈ h∗ be a weight and write λ+ ρ = aε1 + bδ1.

Then λ is integral dominant by Lemma 2.2 if and only if a, b ∈ 1
2 +Z and either a, b ≥ 1

2

or −a = b = 1
2 . Rephrasing this means that if λ = (a|b) is integral dominant we either

have a = b = 0 or a ≥ 1 and b ≥ 0 where a and b are integers. These can be identified
with (1, 1)-hook partitions via (a|b) 7→ (a, 1b)t. By Proposition 2.8 the irreducible
modules for OSp(3|2) are labeled by (λ,±) where λ is a (1, 1)-hook partition.

A.2.2. Translating to Khovanov’s arc algebra of Type D. Let λ = (k, 1l) be a (1, 1)-
hook partition. We will distinguish three cases, the first being that k 6= 0 and k−1 6= l.
The associated flipped weight diagram then looks like

k − 1
2 l + 1

2. . . . . . . . . .

The positions of ◦ and × are swapped if l < k − 1. The corresponding super weight
diagram to (λ, ε) is created by replacing all ∧’s with ∨’s except for possibly the leftmost
one. There we leave the ∨ if k + l is even and ε = −, or if k + l is odd and ε = +. In
all other cases we change the leftmost vertex to ∧.
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In the case λ = ∅ we get the flipped weight diagram
. . . .

The associated super weight diagram is
. . .

for (∅,+), and for (∅,−) we get
. . .

.

The last case is k = l + 1. In this case the flipped weight diagram is

l + 1
2. . . . . . .

The associated super weight diagrams are thus given by

l + 1
2

x . . . . . .

,

where x = ∨ if ε = +, and x = ∧ if ε = − (in this case there is also a dot on the
leftmost ray). Note that if l = 0 the x appears at position 5

2 .
If we want to directly go from highest weights to super weight diagrams, we get the
following connection:

(0|0,+)
. . .

(0|0,−)
. . .

(1|0,+)
. . .

(1|0,−)
. . .

For a > 1:

(a|a− 1,+)
a− 1

2
. . . . . .

(a|a− 1,−)
a− 1

2
. . . . . .

For b 6= a− 1 and (a|b) 6= (0|0):
There is a ◦ at position a− 1

2 and a × at position b+ 1
2 . We have a dot

on the leftmost ray if a+ b is even and ε = + or if a+ b is odd and ε = −.
In all other cases we have no dot.

So our super weight diagrams either consist only of ∨’s and ∧’s (then the cup diagram
has one cup) or it has exactly one ◦ and one × (then the cup diagram has no cup). If λ
belongs to the second group, we have L(λ) = P (λ) and this forms a semisimple block.
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The super weight diagrams of the first form give rise to two blocks, the one containing
L(0|0,+) and L(a|a− 1,+) for a > 0 (where we have an even number of dots) and the
one containing L(0|0,−) and L(a|a − 1,−) for a > 0 (where we have an odd number
of dots).
Looking at the diagrammatics, we can easily write down the socle (resp. radical)
filtration of the nonirreducible projectives. To make things more clearly, we write
the highest weight with the sign instead of the super weight diagram. The translation
between these two can be found in the previous paragraph.

P (0|0,±) P (1|0,±) P (2|1,±) P (k|k − 1,±) for k > 2
L(0|0,±) L(1|0,±) L(2|1,±) L(k|k − 1,±)
L(2|1,±) L(2|1,±) L(0|0,±)L(1|0,±)L(3|2,±) L(k − 1|k − 2,±)L(k + 1|k,±)
L(0|0,±) L(1|0,±) L(2|1,±) L(k|k − 1,±)

A.2.3. Translation functors. In this section we are going to give formulas for the
decomposition of V ⊗d into indecomposable summands. As V⊗_ =

⊕

i∈Z θi decomposes
into translation functors, we are only going to describe the decomposition θiM into
indecomposable summands for an indecomposable summand M of V ⊗d. First of all
note that every indecomposable summand in V ⊗d is actually projective or irreducible
(as m = n = 1, see Proposition 7.1 and the comment just after Theorem 3.15). By
Proposition 7.2 we know that every block contains a unique L(λ, ε) that appears as a
direct summand. In every typical block, this is also the corresponding indecomposable
projective, and for the two atypical blocks we know that V ⊗0 = L(0|0,+) and V ⊗1 =
L(1|0,−), it suffices to consider translation functors for L(0|0,+), L(1|0,−) and indecomposable
projectives.

From the weight diagram
. . .

we see that the only applicable local move

(see Figure 11) is given by , and thus

θiL(0|0,+) =

{

L(1|0,−) if i = 0,

0 otherwise,

by Theorem 5.20. For
. . .

we find three applicable local moves namely

, and , where the last two are applied at positions 1
2 and 3

2 . Again by

Theorem 5.20 we get

θiL(1|0,−) =























L(0|0,+) if i = 0,

L(1|1,+) = P (1|1,+) if i = −1,

L(2|0,+) = P (2|0,+) if i = 1,

0 otherwise.

So only the effects of translation functors on indecomposable projectives are left to
establish, which can be deduced easily from the diagrammatic description above and
the type B analog of [BS10, Theorem 4.2].
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For (a|a− 1) and a > 1 we have

θiP (a|a− 1, ε) =







































































P (a|a− 1,−ε) if i = 0,

P (a|a,−ε)⊕2 if i = −a,

P (a+ 1|a− 1,−ε)⊕2 if i = a,

P (a+ 2|a,−ε) if i = a+ 1,

P (a+ 1|a+ 1,−ε) if i = −a− 1,

P (a|a− 2,−ε) if i = a− 1,

P (a− 1|a− 1,−ε) if i = −a+ 1,

0 otherwise.

For (0|0) we have

θiP (0|0, ε) =























P (1|0,−ε) if i = 0,

P (2|2,−ε) if i = −2,

P (3|1,−ε) if i = 2,

0 otherwise.

For (1|0) we have

θiP (1|0, ε) =















































P (0|0,−ε) if i = 0,

P (1|1,−ε)⊕2 if i = −1,

P (2|0,−ε)⊕2 if i = 1,

P (2|2,−ε) if i = −2,

P (3|1,−ε) if i = 2,

0 otherwise.

For (a|b) 6= (0|0) and b 6= a− 1 we have

θiP (a|b, ε) =















































P (a|b,−ε) if i = 0 and a > 1 and b > 0,

P (a+ 1|b,−ε) if i = a and b 6= a,

P (a− 1|b,−ε) if i = −a+ 1 and a > 1,

P (a|b− 1,−ε) if i = b,

P (a|b+ 1,−ε) if i = −b− 1 and b+ 2 6= a,

0 otherwise.

A.3. The smallest even case: OSp(2|2).

A.3.1. The irreducible representations of osp(2|2) and OSp(2|2). According to (??) we
choose the simple roots δ1 − ε1, δ1 + ε1 and have ρ = (0|0). Let λ = aε1 + bδ1 ∈
h∗. By Lemma 2.2 λ is integral dominant if and only if a, b ∈ Z and either b >
0 or a = b = 0. When inducing the irreducible representation Lg(a|b) of osp(2|2)
to a representation M of OSp(2|2) we must distinguish two cases. If a = 0, the
representation M decomposes into L(0|b,+) and L(0|b,−). If a 6= 0, the representation
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M is irreducible and isomorphic to the induced one from Lg(−a|b) and we denote it by
L((a|b)G). By Proposition 2.11 these are all irreducible modules, which appear.

A.3.2. Translating to Khovanov’s algebra of type D. For the study of super weight
diagrams we distinguish some cases. First assume that our highest weight is denoted
by (a|b)G with a > 0 and a 6= b. Then the associated flipped weight diagram looks like

a b
. . . . . . . . . .

The corresponding super weight diagram is obtained from this by replacing all ∧’s with
∨’s. These all give rise to a semisimple block in Khovanov’s arc algebra.

a b
. . . . . . . . .

.

In the case of (0|b, ε) with b 6= 0 the associated flipped diagram looks like

b
. . . . . . .

When passing to super weight diagrams, we again change all ∧’s to ∨’s except for maybe
the leftmost one. This stays a ∧ if ε = + and gets changed to ∨ if ε = −. Similar to
the previous case, these all give rise to a semisimple block.

b
(0|b,+) . . . . . .

b
(0|b,−) . . . . . .

All remaining ones lie in the same block, but we distinguish whether we have (0|0, ε)
or (a|a)G for a > 0. The flipped weight diagram for (0|0) is given by

. . .

In case of (0|0,+) the super weight diagram is given by
. . .

and for (0|0,−) we get
. . .

.

For (a|a)G with a > 0 the flipped weight diagram is given by

a
. . . . . .

and the associated super weight diagram is given by

a
. . . . . .

.
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Only this last block is nonsemisimple, but looking at the diagrammatics, we can easily
establish the socle (reps. radical) filtration of the indecomposable projectives. The
following table presents these (we replaced the super weight diagrams by the highest
weights):

P (0|0,±) P ((1|1)G) P ((k|k)G) for k > 1

L(0|0,±) L((1|1)G) L((k|k)G)
L((1|1)G) L(0|0,+)L(0|0,−)L((2|2)G) L((k − 1|k − 1)G)L((k + 1|k + 1)G)
L(0|0,±) L((1|1)G) L((k|k)G)

Remark A.1. By identifying P (0|0,+) with P (0|0,+), P (0|0,−) with P (1|0,+) and
P ((a|a)G)with P (a + 1|a,+) we see that the principal block of OSp(2|2) and the
principal block of OSp(3|2) are equivalent.

A.3.3. Translation functors. Similar to the argumentation for OSp(3|2) (as m = n = 1)
all indecomposable summands of V ⊗d are either irreducible or projective. As V ⊗0 =
L(0|0,+) is not projective, we actually know by Proposition 7.2 and our knowledge
of the blocks that this is the only summand which is not projective, so except for
θiL(0|0,+) we only need to deal with indecomposable projectives.
For the irreducible L(0|0,+), one easily sees using Theorem 5.20 that

θiL(0|0,+) =

{

L(0|1,+) = P (0|1,+) if i = −1
2 ,

0 otherwise.

The study of translation functors on projective objects is explicitly written down in ??

and we will just state the results here.

For (1|1)G we have

θiP ((1|1)G) =











































































P (0|1,+) ⊕ P (0|1,−) if i = −
1

2
,

P ((1|2)G)⊕2 if i = −
3

2
,

P ((2|1)G)⊕2 if i =
3

2
,

P ((2|3)G)⊕2 if i = −
5

2
,

P ((3|2)G)⊕2 if i =
5

2
,

0 otherwise,
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For (0|0) we have

θiP (0|0,±) =











































P (0|1,±)⊕2 if i = −
1

2
,

P ((1|2)G) if i = −
3

2
,

P ((2|1)G) if i =
3

2
,

0 otherwise,

For (0|1) we have

θiP (0|1,±) =























P (0|0,±)⊕2 if i =
1

2
,

P (0|2,±) if i = −
3

2
,

0 otherwise.

For a > 1 we have

θiP ((a|a)G) =































































































P ((a|a+ 1)G)⊕2 if i = −a−
1

2
,

P ((a+ 1|a)G)⊕2 if i = a+
1

2
,

P ((a− 1|a)G) if i = −a+
1

2
,

P ((a|a− 1)G) if i = a−
1

2
,

P ((a+ 1|a+ 2)G) if i = −a−
3

2
,

P ((a+ 2|a+ 1)G) if i = a+
3

2
,

0 otherwise,

θiP (0|a,±) =











































P ((1|0)G) if i =
1

2
,

P (0|a+ 1,±) if i = −a−
1

2
,

P (0|a− 1,±) if i = a−
1

2
,

0 otherwise,

θiP ((1|a)G) =











































P (0|a,+) ⊕ P (0|a,−) if i =
1

2
,

P ((1|a + 1)G) if i = −a−
1

2
,

P ((1|a − 1)G) if i = a−
1

2
,

0 otherwise.
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For a > 1 and b 6= a we have

θiP ((a|b)G) =



























































P ((a− 1|b)G) if i = −a+
1

2
,

P ((a+ 1|b)G) if i = a+
1

2
and a+ 1 6= b,

P ((a|b− 1)G) if i = b−
1

2
,

P ((a|b+ 1)G) if i = −b−
1

2
and a− 1 6= b,

0 otherwise.
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